We report on gravitational-wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15∶00 UTC and 1 October 2019 15∶00 UTC. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational-wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near-real time through gamma-ray coordinates network notices and circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of approximately 0.8, as well as events whose components cannot be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational-wave data alone. The range of candidate event masses which are unambiguously identified as binary black holes (both objects ≥3 M⊙) is increased compared to GWTC-1, with total masses from approximately 14 M⊙ for GW190924_021846 to approximately 150 M⊙ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in approximately 26 weeks of data (approximately 1.5 per week) is consistent with GWTC-1. Published by the American Physical Society 2021
Gamma-ray bursts (GRBs), associated with the collapse of massive stars or the collisions of compact objects, are the most luminous events in our universe. However, there is still much to learn about the nature of the relativistic jets launched from the central engines of these objects. We examine how jet structure-that is, the energy and velocity distribution as a function of angle-affects observed GRB afterglow light curves. Using the package afterglowpy, we compute light curves arising from an array of possible jet structures, and present the suite of models that can fit the coincident electromagnetic observations of GW190814 (which is likely due to a background AGN). Our work emphasizes not only the need for broadband spectral and timing data to distinguish among jet structure models, but also the necessity for high resolution radio follow-up to help resolve background sources that may mimic a GRB afterglow.
GW190413_052954 33.4 +12.4 −7.4 23.4 +6.7 −6.3 7.2 × 10 −2 GW190413_134308 45.4 +13.6 −9.6 30.9 +10.2 −9.6 4.4 × 10 −2 GW190421_213856 40.6 +10.4 −6.631.4 +7.5 −8.2 7.7 × 10 −4 GW190424_180648 39.5 +10.9 −6.9 31.0 +7.428.5 +7.5 −7.9 1.0 × 10 −5 GW190512_180714 23.0 +5.4 −5.7 12.5 +3.5 −2.5
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85 þ21 −14 M ⊙ and 66 þ17 −18 M ⊙ (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M ⊙. We calculate the mass of the remnant to be 142 þ28 −16 M ⊙ , which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3 þ2.4 −2.6 Gpc, corresponding to a redshift of 0.82 þ0.28 −0.34. The inferred rate of mergers similar to GW190521 is 0.13 þ0.30 −0.11 Gpc −3 yr −1 .
Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low-and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ∼2; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ∼2.6 and bound the mass of the graviton to m g ≤ 1.76 × 10 −23 eV=c 2 with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to δf 220 ¼ 0.03 þ0.38 −0.35 for the fundamental quadrupolar mode, and δf 221 ¼ 0.04 þ0.27 −0.32 for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.