Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations.
Experimental evidence for a strong influence of the radial electric field on energy deposition into thin metal wires during their electrical explosion in vacuum is presented. Explosion of the metal wire with a positive polarity when the radial electric field "pushes" electrons into the wire results in twice as much deposited energy than with the negative polarity when the radial field "expels" electrons from the wires. Moreover, the axial structure of the deposited energy changes. This effect can be explained by the influence of radial electric field on electronic emission and on vapor breakdown along the wire surface.
In this article we present the design and test results of the most powerful, fast linear transformer driver (LTD) stage developed to date. This 1-MA LTD stage consists of 40 parallel RLC (resistor R, inductor L, and capacitor C) circuits called ''bricks'' that are triggered simultaneously; it is able to deliver $1 MA current pulse with a rise time of $100 ns into the $0:1-Ohm matched load. The electrical behavior of the stage can be predicted by using a simple RLC circuit, thus simplifying the designing of various LTD-based accelerators. Five 1-MA LTD stages assembled in series into a module have been successfully tested with both resistive and vacuum electron-beam diode loads.
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state (EOS) experiments at pressures up to 10Mbar in aluminum. Development of multidimensional radiation-magnetohydrodynamic codes, coupled with more accurate material models (e.g., quantum molecular dynamics calculations with density functional theory), has produced synergy between validating the simulations and guiding the experiments. Z is now routinely used to drive ICF capsule implosions (focusing on implosion symmetry and neutron production) and to perform HEDP experiments (including radiation-driven hydrodynamic jets, EOS, phase transitions, strength of materials, and detailed behavior of z-pinch wire-array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A five year project to enhance the capability and precision of Z, to be completed in 2007, will result in x-ray energies of nearly 3MJ at x-ray powers >300TW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.