We present experiments and theory on the melt dynamics of monodisperse entangled polymers of H-shaped architecture. Frequency-dependent rheological data on a series of polyisoprene H-polymers are in good agreement with a tube model theory that combines path-length fluctuation (like that of star polymer melts) at high frequency, with reptation of the self-entangled “cross-bars” at low frequencies (like that of linear polymer melts). We account explicitly for mild polydispersity. Nonlinear step-strain and transient data in shear and extension confirm the presence of a relaxation time not seen in linear response, corresponding to the curvilinear stretch of the cross-bars. This time is very sensitive to strain due to the exponential dependence of the branch-point friction constants on the effective dangling path length. Strain-induced rearrangements of the branch points are confirmed by small-angle neutron scattering (SANS) on stretched and quenched partially deuterated samples. We develop an extension of melt-scattering theory to deal with the presence of deformed tube variables to interpret the SANS data.
The experimentally determined zero-shear viscosity of entangled branched polymers shows dramatic variation due to the topological arrangements of the branches in branched polymer melts. The position of the branch points, the arm length, and number of the arms are essential to defining the rheological behavior. Recent advances in molecular tube models have led to a much greater understanding of the linear rheology of linear, star, H-shaped, pom-pom, and comb polymers. We correct and extend existing molecular theories for the linear viscoelasticity of comb polymer melts, especially in accounting for (1) polydispersity and (2) the path length of backbone extremities. We compare the predictions with linear rheological data of nearly monodisperse polybutadiene combs. We then predict the zero-shear viscosity for monodisperse comb polyethylenes with varying arm lengths, backbone lengths, and number of arms. For a fixed molecular weight, we find that combs with the longest arms but few branch points give the highest predicted zero-shear viscosities and that they obey an exponential dependence on the length of the arms in the same way as star polymers. We find that combs with short arms, under four entanglements, lie below the 3.4 power law obeyed by linear polymers. All other comb topologies are bounded by these extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.