Despite its importance to our understanding of physics at supranuclear densities, the equation of state (EoS) of matter deep within neutron stars remains poorly understood. Millisecond pulsars (MSPs) are among the most useful astrophysical objects in the Universe for testing fundamental physics, and place some of the most stringent constraints on this high-density EoS. Pulsar timing -the process of accounting for every rotation of a pulsar over long time periods -can precisely measure a wide variety of physical phenomena, including those that allow the measurement of the masses of the components of a pulsar binary system [1]. One of these, called relativistic Shapiro delay [2], can yield precise masses for both an MSP and its companion; however, it is only easily observed in a small subset of high-precision, highly inclined (nearly edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-year data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be 2.14 +0.10 −0.09 solar masses (68.3% credibility interval; 95.4% credibility interval is 2.14 +0.20 −0.18 solar masses). It is highly 1 arXiv:1904.06759v2 [astro-ph.HE] 13 Sep 2019 likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS. Relativistic Shapiro delay, which is observable when a pulsar passes behind its stellar companion during orbital conjunction, manifests as a small delay in pulse arrival times induced by the curvature of spacetime in the vicinity of the companion star. For a highly inclined MSP-white dwarf binary, the full delay is of order ∼10 µs. The relativistic effect is characterized by two parameters, "shape" and "range." In general relativity, shape (s) is the sine of the angle of inclination of the binary orbit (i), while range (r) is proportional to the mass of the companion, m c . When combined with the Keplerian mass function, measurements of r and s also constrain the pulsar mass (m p ; [3] provides a detailed overview and an alternate parameterization).Precise neutron star mass measurements are an effective way to constrain the EoS of the ultradense matter in neutron star interiors. Although radio pulsar timing cannot directly determine neutron star radii, the existence of pulsars with masses exceeding the maximum mass allowed by a given model can straightforwardly rule out that EoS.In 2010, Demorest et al. reported the discovery of a 2-solar-mass MSP, J1614−2230 [4] (though the originally reported mass was 1.97 ± 0.04 M , continued timing has led to a more precise mass measurement of 1.928±0.017 M ; Fonseca et al. 2016 [5]). This Shapiro-delay-enabled measurement disproved the plausibility of some hyperon, boson, and free quark models in nuclear-density environments. In 2013, Antoniadis et al. used optical techniques in combination with pulsar timing to yield a mass measurement of 2.01±0.04 M for the pulsar J0...
We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5 yr pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power law, with common amplitude and spectral slope across pulsars. Under our fiducial model, the Bayesian posterior of the amplitude for an f −2/3 power-law spectrum, expressed as the characteristic GW strain, has median 1.92 × 10−15 and 5%–95% quantiles of 1.37–2.67 × 10−15 at a reference frequency of f yr = 1 yr − 1 ; the Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds 10,000. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors arXiv:1801.02617v2 [astro-ph.HE] 7 Jun 2018 2 THE NANOGRAV COLLABORATION can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW strain amplitude of A GWB < 1.45 × 10 −15 at a frequency of f = 1-yr −1 for a fiducial f −2/3 power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of ∼ 2 improvement over the NANOGrav 9-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gµ < 5.3 × 10 −11 -a factor of ∼ 2 better than the published NANOGrav 9-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is Ω GWB ( f )h 2 < 3.4 × 10 −10 .
The International Pulsar Timing Array project combines observations of pulsars from both Northern and Southern hemisphere observatories with the main aim of detecting ultra-low frequency (∼ 10 −9 − 10 −8 Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.
We have made observations of 98 low-Galactic-latitude pulsars to measure pulse broadening caused by multipath propagation through the interstellar medium. Data were collected with the 305-m Arecibo telescope at four radio frequencies between 430 and 2380 MHz. We used a CLEAN-based algorithm to deconvolve interstellar pulse broadening from the measured pulse shapes. We employed two distinct pulse broadening functions (PBFs): PBF 1 is appropriate for a thin screen of scattering material between the Earth and a pulsar, while PBF 2 is appropriate for scattering material uniformly distributed along the line of sight from the Earth to a pulsar. We found that some observations were better fit by PBF 1 and some by PBF 2 . Pulse broadening times (τ d ) are derived from fits of PBFs to the data, and are compared with the predictions of a smoothed model of the Galactic electron distribution. Several lines of sight show excess broadening, which we model as clumps of high density scattering material. A global analysis of all available data finds that the pulse broadening scales with frequency, ν, as τ d ∝ ν −α where α ∼ 3.9 ± 0.2. This is somewhat shallower than the value α = 4.4 expected from a Kolmogorov medium, but could arise if the spectrum of turbulence has an inner cutoff at ∼300-800 km. A few objects follow particularly shallow scaling laws (the mean scaling index α ∼ 3.1 ± 0.1 and ∼ 3.8 ± 0.2 respectively for the case of PBF 1 and PBF 2 ), which may arise from large scale refraction or from the truncation of scattering screens transverse to the Earth-pulsar line of sight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.