After many years of fusion research, the conditions needed for a D–T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D–T plasma are now being studied in a laboratory plasma. The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≊2.8 MW m−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.
Wall conditioning in the Tokamak Fusion Test Reactor ͑TFTR͒ ͓K. M. McGuire et al., Phys. Plasmas 2, 2176 ͑1995͔͒ by injection of lithium pellets into the plasma has resulted in large improvements in deuterium-tritium fusion power production ͑up to 10.7 MW͒, the Lawson triple product ͑up to 10 21 m Ϫ3 s keV͒, and energy confinement time ͑up to 330 ms͒. The maximum plasma current for access to high-performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through ͑1͒ distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and ͑2͒ injection of four Li pellets into the Ohmic phase of supershot discharges before neutral-beam heating is begun.
Alpha particle loss was measured during the TFTR DT experiments with a scintillator detector located at the vessel bottom in the ion Del B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron at a given plasma current did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new 'collective' alpha particle loss processes in these experiments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.