Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.
The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of lasertarget interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.
We describe the characterization of electromagnetic pulses (EMPs) in experiments on solid targets at PALS laser facility in Prague, for energy up to 600 J and intensity up to 10 16 W cm −2 at focus. Measurements of EMPs have been performed by different conductive probes placed inside and outside the experimental chamber. We show results for different targets and probe configurations, and illustrate effects of spurious direct coupling of these transient fields with the read-out apparatus, which are important for high-energy and high-intensity laser-plasma experiments. The related countermeasures are described and demonstrated to be very effective for improving the signal-to-noise ratio, at expenses of measured bandwidths. They allowed us to detect the EMP components due to the intense neutralization currents flowing through the target holder, and those possibly due to wakefields associated with emitted charged particles, which resulted in these experiments to be of the same order of magnitude. It is the first time both discharge current and associated EMP are effectively measured in the same nanosecond-scale experiment, where this EMP contribution is effectively detected by conductive probes. A remarkable agreement was obtained from comparison of the detected EMP profile with measured neutralization current. We also show the results achieved by means of electromagnetic simulations of fields in the modeled experimental chamber, in particular in the regions where the probes were actually placed during the experiments, and compare them with measured signals. It appears that conductive probes have limitations for the measurement of the high-frequency components of the EMP fields. The illustrated results are of primary importance for the hot topic of EMP characterization and minimization in plants for inertial-confinement-fusion (NIF, LMJ, PETAL) as well as for laser-plasma acceleration (PETAL, ELI, ApollonK).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.