We carried out a cross species cattle-sheep array comparative genome hybridization experiment to identify copy number variations (CNVs) in the sheep genome analysing ewes of Italian dairy or dual-purpose breeds (Bagnolese, Comisana, Laticauda, Massese, Sarda, and Valle del Belice) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. We identified 135 CNV regions (CNVRs; 24 reported in more than one animal) covering ~10.5 Mb of the virtual sheep genome referred to the bovine genome (0.398%) with a mean and a median equal to 77.6 and 55.9 kb, respectively. A comparative analysis between the identified sheep CNVRs and those reported in cattle and goat genomes indicated that overlaps between sheep and both other species CNVRs are highly significant (P<0.0001), suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Many sheep CNVRs include genes with important biological functions. Further studies are needed to evaluate their functional relevance.
Italy counts several sheep breeds, arisen over centuries as a consequence of ancient and recent genetic and demographic events. To finely reconstruct genetic structure and relationships between Italian sheep, 496 subjects from 19 breeds were typed at 50K single nucleotide polymorphism loci. A subset of foreign breeds from the Sheep HapMap dataset was also included in the analyses. Genetic distances (as visualized either in a network or in a multidimensional scaling analysis of identical by state distances) closely reflected geographic proximity between breeds, with a clear north-south gradient, likely because of high levels of past gene flow and admixture all along the peninsula. Sardinian breeds diverged more from other breeds, a probable consequence of the combined effect of ancient sporadic introgression of feral mouflon and long-lasting genetic isolation from continental sheep populations. The study allowed the detection of previously undocumented episodes of recent introgression (Delle Langhe into the endangered Altamurana breed) as well as signatures of known, or claimed, historical introgression (Merino into Sopravissana and Gentile di Puglia; Bergamasca into Fabrianese, Appenninica and, to a lesser extent, Leccese). Arguments that would question, from a genomic point of view, the current breed classification of Bergamasca and Biellese into two separate breeds are presented. Finally, a role for traditional transhumance practices in shaping the genetic makeup of Alpine sheep breeds is proposed. The study represents the first exhaustive analysis of Italian sheep diversity in an European context, and it bridges the gap in the previous HapMap panel between Western Mediterranean and Swiss breeds.
The domestication of taurine cattle initiated ~10 000 years ago in the Near East from a wild aurochs (Bos primigenius) population followed by their dispersal through migration of agriculturalists to Europe. Although gene flow from wild aurochs still present at the time of this early dispersion is still debated, some of the extant primitive cattle populations are believed to possess the aurochs-like primitive features. In this study, we use genome-wide single nucleotide polymorphisms to assess relationship, admixture patterns and demographic history of an ancient aurochs sample and European cattle populations, several of which have primitive features and are suitable for extensive management. The principal component analysis, the model-based clustering and a distance-based network analysis support previous works suggesting different histories for north-western and southern European cattle. Population admixture analysis indicates a zebu gene flow in the Balkan and Italian Podolic cattle populations. Our analysis supports the previous report of gene flow between British and Irish primitive cattle populations and local aurochs. In addition, we show evidence of aurochs gene flow in the Iberian cattle populations indicating wide geographical distribution of the aurochs. Runs of homozygosity (ROH) reveal that demographic processes like genetic isolation and breed formation have contributed to genomic variations of European cattle populations. The ROH also indicate recent inbreeding in southern European cattle populations. We conclude that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations.
An important prerequisite for a conservation programme is a comprehensive description of genetic diversity. The aim of this study was to use anonymous genetic markers to assess the between- and the within-population components of genetic diversity for European pig breeds at the scale of the whole continent using microsatellites. Fifty-eight European pig breeds and lines were analysed including local breeds, national varieties of international breeds and commercial lines. A sample of the Chinese Meishan breed was also included. Eleven additional breeds from a previous project were added for some analyses. Approximately 50 individuals per breed were genotyped for a maximum of 50 microsatellite loci. Substantial within-breed variability was observed, with the average expected heterozygosity and observed number of alleles per locus being 0.56 [range 0.43-0.68] and 4.5 respectively. Genotypic frequencies departed from Hardy-Weinberg expectations (P < 0.01) in 15 European populations, with an excess of homozygotes in 12 of them. The European breeds were on average genetically very distinct, with a Wright F(ST) index value of 0.21. The Neighbour-Joining tree drawn from the Reynolds distances among the breeds showed that the national varieties of major breeds and the commercial lines were mostly clustered around their breeds of reference (Duroc, Hampshire, Landrace, Large White and Piétrain). In contrast, local breeds, with the exception of the Iberian breeds, exhibited a star-like topology. The results are discussed in the light of various forces, which may have driven the recent evolution of European pig breeds. This study has consequences for the interpretation of biodiversity results and will be of importance for future conservation programmes.
BackgroundIn the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array.ResultsAfter quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding.ConclusionsThis study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0406-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.