: Construction of the first stage of the Pierre Auger Observatory has begun. The aim of the Observatory is to collect unprecedented information about cosmic rays above 10(18) eV. The first phase of the project, the construction and operation of a prototype system, known as the engineering array, has now been completed. It has allowed all of the sub-systems that will be used in the full instrument to be tested under field conditions. In this paper, the properties and performance of these sub-systems are described and their success illustrated with descriptions of some of the events recorded thus far. (C) 2003 Elsevier B.V
We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Obser-\ud
vatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mis-\ud
sion to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth’s nighttime\ud
atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by\ud
ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based obser-\ud
vation and we compute the annual exposure in nadir observation. The results are based on studies of the\ud
expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of\ud
clouds and different types of background light. We show that the annual exposure is about one order of\ud
magnitude higher than those of the presently operating ground-based observatories
: The new setup of the CODALEMA experiment installed at the Radio Observatory in Nançay, France, is described. It includes broadband active dipole antennas and an extended and upgraded particle detector array. The latter gives access to the air shower energy, allowing us to compute the efficiency of the radio array as a function of energy. We also observe a large asymmetry in counting rates between showers coming from the North and the South in spite of the symmetry of the detector. The observed asymmetry can be interpreted as a signature of the geomagnetic origin of the air shower radio emission. A simple linear dependence of the electric field with respect to v∧B is used which reproduces the angular dependencies of the number of radio events and their electric polarity.
PACS:95.55. Jz; 95.85.Ry;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.