On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10 −15 at a reference frequency of 1yr −1 and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Ω gw ( f )h 2 < 1.1 × 10 −9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ∼ 5×10 −9 Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gµ/c 2 , characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gµ/c 2 < 1.3 × 10 −7 , identical to that set by the Planck Collaboration, when combining Planck and high-Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Ω relic gw ( f )h 2 < 1.2 × 10 −9 , a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array. c 0000 RAS arXiv:1504.03692v3 [astro-ph.CO] 9 Sep 2015
We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitationalwave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600−3053 and J1918−0642, implying pulsar and companion masses m p = 1.22 +0.5 −0.35 M ⊙ , m c = 0.21 +0.06 −0.04 M ⊙ and m p = 1.25 +0.6 −0.4 M ⊙ , m c = 0.23 +0.07 −0.05 M ⊙ , respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909−3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600−3053 and J1909−3744.
Here we present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best root-mean-square timing residuals in this set are ∼30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These properly and optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our dataset to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h c (1 yr −1 ) < 7 × 10 −15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909−3744.
The highly stable spin of neutron stars can be exploited for a variety of (astro-)physical investigations. In particular arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such "Pulsar Timing Arrays" (PTAs) have been set up around the world over the past decades and collectively form the "International" PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available online) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limits placed by individual PTAs by a factor of ∼ 2 and provides a 2 − σ limit on the dimensionless amplitude of a stochastic GWB of 1.7 × 10 −15 at a frequency of 1 yr −1 . This is 1.7 times less constraining than the limit placed by , due mostly to the more recent, high-quality data they used. c 2015 RAS c 2015 RAS, MNRAS 000, 1-25 First IPTA Data Release 3 σJitter ∝ fJW eff 1 + m 2 I Np ,with fJ the jitter parameter, which needs to be determined experimentally (Liu et al. 2012;Shannon et al. 2014); W eff the pulse width; mI = σE/µE the modulation index, defined by the mean (µE) and standard deviation (σE) of the pulseenergy distribution; and Np = tint/P the number of pulses in the observation, which equals the total observing time divided by the pulse period. Consequently, the highest-precision timing efforts ideally require rapidly rotating pulsars (P 0.03 s) with high relatively flux densities (S1.4 GHz 0.5 mJy) and narrow pulses (δ 20%) are observed at sensitive (A eff /Tsys) telescopes with wide-bandwidth receivers (∆f ) and for long integration times (tint 30 min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.