On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
GW170817: Measurements of neutron star radii and equation of state The LIGO Scientific Collaboration and The Virgo Collaboration On August 17, 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parameterization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R 1 = 10.8 +2.0 −1.7 km for the heavier star and R 2 = 10.7 +2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M as required from electromagnetic observations and employ the equation of state parametrization, we further constrain R 1 = 11.9 +1.4 −1.4 km and R 2 = 11.9 +1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 +2.7 −1.7 × 10 34 dyn cm −2 at the 90% level.
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10 −21 . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410 These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, ν µ-induced tracks from the Northern hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of 6.7 +1.1 −1.2 • 10 −18 GeV −1 s −1 sr −1 cm −2. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8 σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cutoff at high energies. Allowing the electron neutrino flux to deviate from the other two flavors, we find a ν e fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay dominated sources, is rejected with a significance of 3.6 σ (p = 0.014%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.