The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
The High Luminosity Large Hadron Collider (HL-LHC) is the new flagship project of CERN. First endorsed in 2013 and approved in 2016, HL-LHC is an upgrade of the accelerator aiming to increase by a factor of ten the statistics of the LHC collisions at the horizon of 2035-2040. HL-LHC relies on cutting edge technologies: among them, large aperture superconducting magnets will replace the present hardware to allow a smaller beam size in two interaction points (IPs). The project involves the construction of about 150 magnets of six different types: the quadrupole triplet, two main dipoles and three orbit correctors. The triplet, manufactured at CERN and in the USA, will consist of 30 magnets based on Nb 3 Sn technology, with an Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Abstract-The High Luminosity LHC Project at CERN entered into the production phase in October 2015 after the completion of the design study phase. In the meantime, the development of the 11 T dipole needed for the upgrade of the collimation system of the machine made significant progress with very good performance of the first two-in-one magnet model of 2-m length made at CERN. The 11 T dipole, which is more powerful than the current main dipoles of LHC, can be made shorter with an equivalent integrated field. This will allow creating space for the installation of additional collimators in specific locations of the dispersion suppressor regions. Following tests carried out during heavy ions runs of LHC in the end of 2015, and a more recent review of the project budget, the installation plan for the 11 T dipole was revised. Consequently, one 11 T dipole full assembly containing two 11 T dipoles of 5.5-m length will be installed on either side of interaction point 7. These two units shall be installed during the long shutdown 2 in years 2019-2020. After a brief reminder on the design features of the magnet, this paper describes the current status of the development activities, in particular the short model programme and the construction of the first full scale prototype at CERN. Critical operations like the reaction treatment and the coil impregnation are discussed, the quench performance tests results of the two-in-one model are reviewed and finally, the plan towards the production for the long shut downs 2 is described. Index Terms-Accelerator magnets, high-luminosity large hadron collider (LHC) project, Nb3Sn 11 T dipole, superconducting magnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.