We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
In a tokamak plasma the maximum achievable density is limited. A too high density will result in a violent end of a discharge. Two types of density limit disruption can be distinguished: (a) impure and moderately heated discharges, if the radiative power exceeds the input power, (b) clean, auxiliary heated discharges, where the Greenwald limit is encountered. It has been found that in TEXTOR-94 these two density limits differ by the radiative instability in the plasma boundary, which preceeds the disruption. A symmetric radiative mantle and a detachment are observed prior to the first type, while the Greenwald limit has a MARFE precursor. Control of the impurity content, edge and recycling properties prevents the growth of the MARFE and makes it possible to exceed the Greenwald limit in TEXTOR-94 by more than a factor of 2. High densities have been obtained by means of normal gas feed. Maximum central densities of ne(0) = 1.3 × 1020 m-3 have been obtained. The maximum achievable density scales with the input power and plasma current. Non-disruptive discharges, with a stationary (t > 25 τE) density a factor of 1.93 above the Greenwald limit have been produced in L mode. The radiative losses and impurity concentration have been maintained at a relatively low level during the entire high density phase.
The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald-like scaling, , for the RFP and the ohmic tokamak, a mixed scaling, , for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, are taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
The influence of the magnetic ergodization on edge turbulence and turbulence-induced transport has been investigated by Langmuir probes in TEXTOR under three different static DED configurations. Common features are observed. With DED, the edge equilibrium profiles are altered and the resultant positive Er is in agreement with modelling. In the ergodic zone, the potential fluctuations are strongly reduced and the local turbulent flux changes direction from radially outwards to inwards. In the same zone, the turbulence properties are profoundly modified by energy redistribution in frequency spectra, suppression of large-scale structures and reduction of the radial and poloidal correlation lengths for all frequencies. Meanwhile, the fluctuation poloidal phase velocity changes sign from the electron to ion diamagnetic drift, consistent with the change of the Er × B flow, whereas the slight radially outward propagation of fluctuations is hindered by the DED. In the laminar region, the turbulence correlation is found to react to the observed reduced flow shear. Before the DED the Reynolds stress displays a radial gradient at the plasma edge while during DED the profile is suppressed, suggesting a rearrangement by the DED on the flow momentum profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.