The Electron Cyclotron (EC) system for the ITER tokamak is designed to inject ≥20 MW RF power into the plasma for Heating and Current Drive (H&CD) applications. The EC system consists of up to 26 gyrotrons (between 1 to 2 MW each), the associated power supplies, 24 transmission lines and 5 launchers. The EC system has a diverse range of applications including central heating and current drive, current profile tailoring and control of plasma magneto-hydrodynamic (MHD) instabilities such as the sawtooth and neoclassical tearing modes (NTMs). This diverse range of applications requires the launchers to be capable of depositing the EC power across nearly the entire plasma cross section. This is achieved by two types of antennas: an equatorial port launcher (capable of injecting up to 20 MW from the plasma axis to mid-radius) and four upper port launchers providing access from inside of mid radius to near the plasma edge. The equatorial launcher design is optimized for central heating, current drive and profile tailoring, while the upper launcher should provide a very focused and peaked current density profile to control the plasma instabilities.The overall EC system has been modified during the past three years taking into account the issues identified in the ITER design review from 2007 and 2008 as well as integrating new technologies. This paper will review the principal objectives of the EC system, modifications made during the past two years and how the design is compliant with the principal objectives.
, teams at the contributing institutes 1,2,3,5,6,7 Abstract. A CW capable inline electron cyclotron emission (ECE) separation system for feedback control, featuring oversized corrugated waveguides, is commissioned on ASDEX upgrade (AUG). The system is based on a combination of a polarization independent, non-resonant, Mach-Zehnder diplexer equipped with dielectric plate beam splitters [2,3] employed as corrugated oversized waveguide filter, and a resonant Fast Directional Switch, FADIS [4,5,6,7] as ECE/ECCD separation system. This paper presents an overview of the system, the low power characterisation tests and first high power commissioning on AUG.
The design of the ITER ECRH system provides 20MW millimeter wave power for central plasma heating and MHD stabilization. The system consists of an array of 24 gyrotrons with power supplies coupled to a set of transmission lines guiding the beams to the four upper and the equatorial launcher. The front steering upper launcher design described herein has passed successfully the preliminary design review, and it is presently in the final design stage. The launcher consists of a millimeter wave system and steering mechanism with neutron shielding integrated into an upper port plug with the plasma facing blanket shield module (in-vessel) and a set of ex-vessel waveguides connecting the launcher to the transmission lines.Part of the transmission lines are the ultra-low loss CVD torus diamond windows and a shutter valve, a mitre bend section and the feedthroughs integrated in the plug closure plate. These components are connected by corrugated waveguides and form together the first confinement system (FCS). In-vessel, the mm-wave system includes a quasi-optical beam propagation system including four mirror sets and a front steering mirror. The millimeter wave system is integrated into a specifically optimized upper port plug providing structural stability to withstand plasma disruptions forces and the high heat load from the plasma side with a dedicated blanket shield module. A recent update in the ITER interface definition has resulted in the recession of the upper port plug first wall panels, which is now integrated into the design. Apart from the millimeter wave system the upper port plug houses also a set of shield blocks which provide neutron shielding. An overview of the actual ITER ECRH upper launcher is given together with some highlights of the design.
The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-J Infrared Milli Terahz Waves kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.The development of the EC system is facing significant challenges, which includes not only an advanced microwave system but also compliance with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012.Since the conceptual design of the EC system was established in 2007, the EC system has progressed to a preliminary design stage in 2012 and is now moving forward toward a final design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.