The effects of dietary virginiamycin level on performance and liver abscesses in feedlot cattle were evaluated in seven dose-response studies. Steers and heifers were fed finishing diets ranging in energy content from 1.34 to 1.51 Mcal of NEg/kg of DM. In all studies, virginiamycin added to the diet improved average daily gain and(or) feed conversion, with no substantial effect on dry matter intake. Pooled analyses of four studies providing virginiamycin at 11.0, 19.3, and 27.6 mg/kg of DM in the complete diet indicated that growth and feed conversion were linearly improved (P < .05); feeding 19.3 mg/kg improved these measurements by 3.0 and 3.8%, respectively. Overall incidence (score 0 vs score 1, 2, and 3) and severity (score 0, 1, and 2 vs score 3) of liver abscesses were reduced (P < .01) by feeding virginiamycin at either 19.3 or 27.6 mg/kg. Linear plateau modeling indicated that the effective dose range for virginiamycin in feedlot diets (DM basis) was 19.3 to 27.3 mg/kg for increasing average daily gain, 13.2 to 19.3 mg/kg for improving feed conversion, and 16.5 to 19.3 mg/kg for reducing liver abscess incidence.
Experiments were conducted at 3 US locations (CA, ID, and TX) to determine the effects of dietary zilpaterol hydrochloride (Zilmax, Intervet Inc., Millsboro, DE) and duration of zilpaterol feeding on performance and carcass merit of finishing steers and heifers. At each site, 160 steers and 160 heifers were stratified within sex by initial BW (study d -1) and assigned randomly within BW strata to 1 of 4 treatments in a randomized complete block design (4 blocks/treatment for each sex). The 4 treatments were arranged in a 2 (no zilpaterol vs. zilpaterol) x 2 (20 or 40 d duration of zilpaterol feeding) factorial arrangement of treatments. When included in the diet, zilpaterol was supplemented at 8.3 mg/kg of DM. Each pen consisted of 10 animals. Each animal was individually weighed unshrunk on d 1, 21 or 41, and 66 of the experiment. Following d 66, cattle were slaughtered and carcass data collected. Feeding zilpaterol increased (P<0.01) final BW of steers and heifers by 11.6 and 6.7 kg, respectively. In addition, feeding zilpaterol hydrochloride increased (P
Objective-To compare effects of administration of a modified-live respiratory virus vaccine once with administration of the same vaccine twice on the health and performance of cattle. Design-Randomized, controlled trial. Animals-612 mixed-breed male cattle with unknown health histories. Procedures-Cattle were randomly assigned to 1 of 2 treatment groups (single vaccination treatment group [SVAC group] vs revaccination treatment group [REVAC group]) during the preconditioning phase of production. All cattle were given a modified-live respiratory virus vaccine. Eleven days later, REVAC group cattle received a second injection of the same vaccine. During the finishing phase of production, cattle from each treatment group were either vaccinated a third time with the modified-live respiratory virus vaccine or given no vaccine. Health observations were performed daily. Blood and performance variables were measured throughout the experiment. Results-During preconditioning, no significant differences were observed in performance or antibody production between groups. Morbidity rate from bovine respiratory disease was lower for SVAC group cattle; however, days to first treatment for bovine respiratory disease were not different between groups. No significant differences in body weights, daily gains, or dry-matter intake between groups were observed during the finishing phase. Revaccination treatment group cattle had improved feed efficiency regardless of vaccination protocol in the finishing phase. Conclusions and Clinical Relevance-Vaccination once with a modified-live respiratory virus vaccine was as efficacious as vaccination twice in the prevention of bovine respiratory disease of high-risk cattle, although feed efficiency was improved in REVAC group cattle during the finishing period.
While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.