The NE Fennoscandian Shield comprises the Northern Belt in Finland and the Southern Belt in Karelia. They host mafic-ultramafic layered Cu-Ni-Cr and Pt-Pd-bearing intrusions. Precise U-Pb and Sm-Nd analyses indicate the 130-Ma evolution of these intrusions, with major events at 2.53, 2.50, 2.45, and 2.40 Ga. Barren phases were dated at 2.53 Ga for orthopyroxenites and olivine gabbro in the Fedorovo-Pansky massif. PGE-bearing phases of gabbronorites (Pechenga, Fedorovo-Pansky, Monchetundra massifs) and norites (Monchepluton) are 2.50 Ga old. Anorthosites of Mt. Generalskaya (Pechenga), the Fedorovo-Pansky, and Monchetundra massifs occurred at 2.45 Ga. This event produced layered PGE-bearing intrusions in Finland (Penikat, Kemi, Koitelainen) and mafic intrusions in Karelia. The Imandra lopolith dikes occurred at the final phase (2.40 Ga). Slightly negative εNd and ISr values (0.703–0.704) suggest that intrusions originated from an enriched mantle reservoir. Low 3He/4He ratios in accessory minerals (ilmenite and magnetite) indicate an upper mantle source. Large-scale correlations link the Fennoscandian Shield with the Superior and Wyoming cratons.
The Kola region (NE of Fennoscandian Shield) has high uranium potential. The most promising structures within the Kola region in respect to uranium enrichment are the Litsa area and the Salla-Kuolajarvi zone. The principal objective of the present study was to define sequence and timing of uranium deposition within these areas. Isotopic (U-Pb and Rb-Sr) exploration of the rocks from Skal’noe and Dikoe U occurrences of the Litsa area and Ozernoe occurrences of the Salla-Kuolajarvi zone was carried out. As it follows from isotopic dating, the principal stages of uranium mineralization had taken place 2.3–2.2, 1.75–1.65, and 0.40–0.38 Ga ago, simultaneously with the stages of alkaline magmatism in the Kola region, which provided the uranium input. Uranium mineralization was related to hydrothermal and metasomatic events under medium to low temperature of ~550 °С at 2.3 Ga to ~280 °С at 0.4 Ga.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.