Abstract.Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of 1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high-and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed and wave age shows encouraging agreement with Humidity Exchange Over the Sea (HEXOS) campaign results.
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry (E FF ) are based on energy statistics and cement production data, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), E FF was 9.0 ± 0.5 GtC yr −1 , E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 4.4 ± 0.1 GtC yr −1 , S OCEAN was 2.6 ± 0.5 GtC yr −1 , and S LAND was 3.0 ± 0.8 GtC yr −1 . For the year 2014 alone, E FF grew to 9.8 ± 0.5 GtC yr −1 , 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr −1 that took place during 2005-2014. Also, for 2014, E LUC was 1.1 ± 0.5 GtC yr −1 , G ATM was 3.9 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 , and S LAND was 4.1 ± 0.9 GtC yr −1 . G ATM was lower in 2014 compared to the past decade (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), reflecting a larger S LAND for that year. The global atmospheric CO 2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E FF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0....
A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO 2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. Highprofile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection Sabine et al., 2013;Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here:
The ocean color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The AERONET-OC data products are the normalized water-leaving radiances determined at various center wavelengths in the visible and near-infrared spectral regions. These data complement atmospheric AERONET aerosol products, such as optical thickness, size distribution, single scattering albedo, and phase function. This work describes in detail this new AERONET component and its specific elements including measurement method, instrument calibration, processing scheme, quality assurance, uncertainties, data archive, and products accessibility. Additionally, the atmospheric and bio-optical features of the sites currently included in AERONET-OC are briefly summarized. After illustrating the application of AERONET-OC data to the validation of primary satellite products over a variety of complex coastal waters, recommendations are then provided for the identification of new deployment sites most suitable to support satellite ocean color missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.