BackgroundAcinetobacter baumannii infections are difficult to treat owing to the emergence of various antibiotic resistant isolates. Because treatment options are limited for multidrug-resistant (MDR) A. baumannii infection, the discovery of new therapies, including combination therapy, is required. We evaluated the synergistic activity of colistin, doripenem, and tigecycline combinations against extensively drug-resistant (XDR) A. baumannii and MDR A. baumannii.MethodsTime-kill assays were performed for 41 XDR and 28 MDR clinical isolates of A. baumannii by using colistin, doripenem, and tigecycline combinations. Concentrations representative of clinically achievable levels (colistin 2 µg/mL, doripenem 8 µg/mL) and achievable tissue levels (tigecycline 2 µg/mL) for each antibiotic were used in this study.ResultsThe colistin-doripenem combination displayed the highest rate of synergy (53.6%) and bactericidal activity (75.4%) in 69 clinical isolates of A. baumannii. Among them, thedoripenem-tigecycline combination showed the lowest rate of synergy (14.5%) and bacteri-cidal activity (24.6%). The doripenem-tigecycline combination showed a higher antagonistic interaction (5.8%) compared with the colistin-tigecycline (1.4%) combination. No antagonism was observed for the colistin-doripenem combination.ConclusionsThe colistin-doripenem combination is supported in vitro by the high rate of synergy and bactericidal activity and lack of antagonistic reaction in XDR and MDR A. baumannii. It seems to be necessary to perform synergy tests to determine the appropri-ate combination therapy considering the antagonistic reaction found in several isolates against the doripenem-tigecycline and colistin-tigecycline combinations. These findings should be further examined in clinical studies.
Background : The aim of this study was to determine the yearly prevalence and genotype distribution of extended-spectrum b-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae collected over a 3-yr period in Gwangju, Korea.Methods : Clinical isolates of E. coli and K. pneumoniae collected at Chosun University Hospital from September 15, 2005 to September 14, 2008 were evaluated. Antimicrobial susceptibility testing was performed using the Vitek II system (bioMe@ rieux, USA) and agar dilution methods. Screening for ESBL and AmpC b-lactamase genes was performed using PCR amplification of plasmid DNA followed by direct sequencing of the PCR products.Results : The percentage of ESBL-producing isolates was 12.6% (196/1,550) for E. coli and 26.2% (294/1,121) for K. pneumoniae. The ESBL gene sequencing results showed that the most prevalent ESBL types were CTX-M (93.5%) and SHV (12.9%) in E. coli, and SHV (73.2%) and CTX-M (46.3%) in K. pneumoniae. The most common ESBL in E. coli was CTX-M-15-like, followed by CTX-M-14-like, SHV-2a-like, and SHV-12-like. The most prevalent ESBL type in K. pneumoniae was SHV-12, followed by CTX-M-14-like and CTX-M-15-like. Fifty-one percent (21/41) of ESBL-producing K. pneumoniae with ESBL types verified by sequencing also had DHA-1-like AmpC b-lactamases. However, none of the ESBL-producing E. coli was positive in the AmpC b-lactamase PCR analysis.Conclusions : In this study, the most common types of class A ESBLs identified were CTX-M-15-like in E. coli and SHV-12-like in K. pneumoniae. (Korean J Lab Med 2010;30:616-23)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.