The HIV-1 restriction factor SAMHD11,2 is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool3-5. However, the phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels6-8, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1, we identify SAMHD1 mutants that are RNase-positive but dNTPase-negative (SAMHD1D137N) or RNase-negative but dNTPase-positive (SAMHD1Q548A). The allosteric mutant SAMHD1D137N is able to restrict HIV-1 infection, whereas the AGS mutant SAMHD1Q548A is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, the phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in vivo and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.
To investigate the expression of programmed death-ligand 1 (PD-L1) and immune checkpoints and their prognostic value for resected head and neck squamous cell cancer (HNSCC). PD-L1 expression on tumor cells (TC) and tumor-infiltrating immune cells (IC), abundance of tumor-infiltrating lymphocytes (TILs), and expression of the immune checkpoints were investigated in 402 HNSCC patients. PD-L1 expression on TC and IC was categorized into four groups according to the percentage of PD-L1-positive cells. PD-L1 positivity was defined as ≥5% of cells based on immunohistochemistry. High PD-L1 expression on IC, but not TC, was an independent favorable prognostic factor for RFS and OS adjusted for age, gender, smoking, stage, and HPV. High frequencies of CD3+ or CD8+ TILs, Foxp3+ Tregs, and PD-1+ TILs were strongly associated with favorable prognosis. PD-L1 was exclusively expressed on either TC or IC. Transcriptome analysis demonstrated that IC3 expressed higher levels of the effector T cell markers than TC3, suggesting that PD-L1 expression is regulated via an adaptive IFNγ-mediated mechanism. High PD-L1 expression on IC, but not TC, and high abundance of PD-1+ T cells and Foxp3+ Tregs are favorable prognostic factors for resected HNSCC. This study highlights the importance of comprehensive assessment of both TC and IC.
HGF/c-Met supports a pleiotrophic signal transduction pathway that controls stem cell homeostasis. Here, we directly addressed the role of c-Met in stem cell-mediated liver regeneration by utilizing mice harboring c-met floxed alleles and Alb-Cre or Mx1-Cre transgenes. To activate oval cells, the hepatic stem cell (HSC) progeny, we used a model of liver injury induced by diet containing the porphyrinogenic agent, 3, 5-diethocarbonyl-1,4-dihydrocollidine (DDC). Deletion of c-met in oval cells was confirmed in both models by PCR analysis of FACS- sorted EpCam-positive cells. Loss of c-Met receptor decreased sphere-forming capacity of oval cells in vitro as well as reduced oval cell pool, impaired migration and decreased hepatocytic differentiation in vivo as demonstrated by double immunofluorescence using oval- (A6 and EpCam) and hepatocyte-specific (HNF-4α) antibodies. Furthermore, lack of c-Met had a profound effect on tissue remodeling and overall composition of HSC niche which was associated with greatly reduced MMP9 activity and decreased expression of SDF1. Using a combination of double immunofluorescence of cell type-specific markers with MMP9 and gelatin zymography on the isolated cell populations, we identified macrophages as a major source of MMP9 in DDC-treated livers. The Mx1-Cre-driven c-met deletion caused the greatest phenotypic impact on HSCs response as compared to the selective inactivation in the epithelial cell lineages achieved in c-Metfl/fl; Alb-Cre+/- mice. However, in both models, genetic loss of c-met triggered a similar cascade of events leading to failure of HSCs mobilization and death of the mice. Conclusion: These results establish a direct contribution of c-Met in regulation of HSC response, and support a unique role for HGF/c-Met as an essential growth factor signaling pathway for regeneration of diseased liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.