Cavernous carotid aneurysms (CCAs) are uncommon pathologic entities. Extradural place and the skull base location make this type of an aneurysm different in clinical features and treatment techniques. Direct aneurysm clipping is technically difficult and results in a significant postoperative neurological deficit. Therefore, several techniques of indirect surgical treatment were developed with different surgical outcomes, such as proximal occlusion of internal carotid artery (ICA) or trapping with or without bypass (superficial temporal artery-middle cerebral artery bypass or high-flow bypass). High-flow bypass with proximal ICA occlusion seems to be the most appropriate surgical treatment for CCA because of the high rate of symptom improvement, aneurysm thrombosis, and minimal postoperative complications. However, in cases of CCA presented with direct carotid-cavernous fistula, the appropriate surgical treatment is high-flow bypass with aneurysm trapping, which the fistula can be obliterated immediately after surgery.
Complex intracranial aneurysms (CIAs) rank high among the most technically demanding neurosurgical pathologies. Microsurgery and clip ligation can be challenging in CIAs as circumferential visualization of the aneurysm, parent vessels, branches, perforators, and other neurovascular structures is important to prevent residual aneurysms or strokes from vessel or perforator occlusion. Decompression of the aneurysm sac is often required for CIAs. We reviewed the literature and PubMed advanced search showed 13 results of adenosine-induced flow arrest to facilitate intracranial complex aneurysm clip ligation which included three independent case reports and ten cases in a case series from 1999 to May 2016. Few case series have described the use of adenosine in intracranial aneurysm surgery. Satisfactory aneurysm decompression was achieved in all cases, and all aneurysms were clipped successfully. We recommend that adenosine cardiac arrest is a relatively novel method for decompression of intracranial aneurysms to facilitate clip application. With appropriate safety precautions, it is a reasonable alternative method when temporary clipping of proximal vessels is not desirable or not possible.
Context:The increase in the detection of unruptured cerebral aneurysms has led to management dilemma. Prediction of risk based on the size of the aneurysm is not always accurate. There is no objective way of predicting rupture of aneurysm so far. Computational fluid dynamics (CFDs) was proposed as a tool to identify the rupture risk.Aims:To know the correlation of CFD findings with intraoperative microscopic findings and to know the relevance of CFD in the prediction of rupture risk and in the management of unruptured intracranial aneurysms.Settings and Design:A prospective study involving nine cases over a period of 6 months as an initial analysis.Subjects and Methods:Both males and females were included in the study. Preoperative analysis was performed using computed tomography angiogram, magnetic resonance imaging in all cases and digital substraction angiogram in some cases. Intraoperatively microscopic examination of the aneurysm wall was carried out and images recorded. The correlation was done between microscopic and CFD images.Results:Seven cases were found intraoperatively to have a higher risk of rupture based on the thinning of the wall. Two cases had an atherosclerotic wall. All cases had low wall shear stress (WSS).Only two cases with atherosclerotic wall had a correlation with low WSS.Conclusions:While the pressure measured with CFD technique is a good predictor of rupture risk, the WSS component is controversial. Multicentric trials involving a larger subset of population are needed before drawing any definite conclusions. On-going development in the CFD analysis may help to predict the rupture chances accurately in future.
Low WSS alone is not sufficient to determine the thickness of an aneurysm wall. Its association with other parameters might enable one to distinguish preoperatively atherosclerotic, thick areas (high P, diverging WSS vectors, high flow velocity) from thin areas with higher rupture risk (parallel WSS vectors, lower flow velocity). The changing balance between these parameters can modify the features and the risk of rupture of aneurysm wall over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.