Oryza rufipogon Griff. (common wild rice; CWR) is the ancestor of Asian cultivated rice (Oryza sativa L.). Investigation of the genetic structure and diversity of CWR in China will provide information about the origin of cultivated rice and the grain quality and yield. In this study, we used 36 simple sequence repeat (SSR) markers to assay 889 accessions, which were highly representative of whole germplasm in China. The analysis revealed a hierarchical genetic structure within CWR. First, CWR has diverged into two ecotypic populations, a south subtropical population (SSP) and a middle subtropical population (MSP), probably owing to natural selection by the different climates. The distribution of specific alleles and haplotypes indicated that Chinese CWR had both indica-like and japonica-like variations; the SSP was an indica-like type, whereas the MSP was more japonica-like. The SSP and MSP further diverged into five (HN, GD-GX1, GX2, FJ and YN) and two (JX-HuN1 and HuN2) geographical populations, respectively. The genetic data suggest the isolation by distance, although water systems also appear to play an important role in the formation of homogenous populations, and occasionally landscape was also involved. The population GD-GX1, which grew widely in Guangdong and Guangxi provinces, was the largest geographical population in China. It had a high level of genetic diversity (GD) and the closest genetic relationship with other inferred populations. The population HN, with the smallest SSR molecular weights and the highest level of GD, may be the most ancestral population.
Background: Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. Results: To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. Conclusion: OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.