Background
The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T−B− severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes.
Objective
We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations.
Methods
We have developed a flow cytometry–based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1−/− pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology.
Results
Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity.
Conclusions
Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process.
In the original version of Figure 2B, two of the patient identifiers were incorrectly noted. OS-11 and OS-12 were listed twice. The second instances should have been labeled as CID-11 and CID-12, respectively. The correct figure panel is below.The authors regret the error.
Recombination Activating Genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immune deficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immune deficiency with granulomas or autoimmunity (CID-G/AI). Using next generation sequencing, we analyzed the T and B cell receptor (TCR, BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n=5), leaky SCID (n=3), or CID-G/AI (n=4). Restriction of repertoire diversity skewed usage of Variable (V), Diversity (D), and Joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V,D and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework for better understanding the phenotypic heterogeneity of RAG deficiency.
Despite the availability of several formulations of inhaled corticosteroids (ICS) and delivery devices for treatment of childhood asthma and despite the development of evidence-based guidelines, childhood asthma control remains suboptimal. Improving uptake of asthma management plans, both by families and practitioners, is needed. Adherence to daily ICS therapy is a key determinant of asthma control and this mandates that asthma education follow a repetitive pattern and involve literal explanation and physical demonstration of the optimal use of inhaler devices. The potential adverse effects of ICS need to be weighed against the benefit of these drugs to control persistent asthma especially that its safety profile is markedly better than oral glucocorticoids. This article reviews the key mechanisms of inhaled corticosteroid action; recommendations on dosage and therapeutic regimens; potential optimization of effectiveness by addressing inhaler technique and adherence to therapy; and updated knowledge on the real magnitude of adverse events.
In the original version of Figure 2B, two of the patient identifiers were incorrectly noted. OS-11 and OS-12 were listed twice. The second instances should have been labeled as CID-11 and CID-12, respectively. The correct figure panel is below.The authors regret the error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.