We review the epidemiology, etiology, symptomatology, clinical presentation, anatomy, pathophysiology, workup, diagnosis, non-surgical and surgical management, postoperative care, outcomes, long-term management, and morbidity of lumbar radiculopathy. We review when outpatient conservative management is appropriate and "red flag" warning symptoms that would necessitate an emergency evaluation. Diagnostic modalities, including magnetic resonance imaging (MRI), computerized tomography (CT), contrast myelogram, electromyogram (EMG), and nerve conduction velocity (NCV), are involved in the diagnosis and decision-making are discussed. Treatment of lumbar radiculopathy requires a multimodal and multispecialty team. We review indications for the involvement of other professionals, including physical therapy (PT), occupational therapy (OT), physical and rehabilitation medicine (PMR), and pain management.
Background:Ventriculoperitoneal (VP) shunt placement is one of the most commonly performed procedures in neurosurgery. One rare complication is the formation of an abdominal pseudocyst, which can cause shunt malfunction.Case Descriptions:We present four unique cases of abdominal pseudocyst formation. Our first patient initially presented with a right upper quadrant pseudocyst. Shunt was externalized and the distal end was revised with placement of catheter on the opposite side. He developed another pseudocyst within 5 months of shunt revision and developed another shunt failure. Our second patient had a history of shunt revisions and a known pseudocyst, presented with small bowel obstruction, and underwent laparotomy for the lysis of adhesions with improvement in his symptoms. After multiple readmissions for the same problem, it was thought that the pseudocyst was causing gastric outlet obstruction and his VP shunt was converted into a ventriculopleural shunt followed by percutaneous drainage of his pseudocyst. Our third patient developed hydrocephalus secondary to cryptococcal meningitis. He developed abdominal pain secondary to an abdominal pseudocyst, which was drained percutaneously with relief of symptoms. The fourth patient had a history of multiple shunt revisions and a previous percutaneous pseudocyst drainage that recurred with cellulitis and abscess secondary to hardware infection.Conclusion:Abdominal pseudocysts are a rare but important complication of VP shunt placement. Treatment depends on etiology, patient presentation, and clinical manifestations. Techniques for revision include distal repositioning of peritoneal catheter, revision of catheter into pleural space or right atrium, or removal of the shunt completely.
Central nervous system (CNS) histoplasmosis is rare and difficult to diagnose because it is often overlooked or mistaken for other pathologies due to its nonspecific symptoms. A 32-year-old Hispanic man with advanced acquired immunodeficiency virus presented with altered mental status and reported confusion for the past 3 months. He had a Glasgow Coma Scale of 12, repetitive nonfluent speech, and a disconjugate gaze with a right gaze preference. Lung computed tomography (CT) findings indicated a pulmonary histoplasmosis infection. Magnetic resonance imaging of the brain revealed a ring-enhancing lesion in the left caudate nucleus. A CT-guided left retroperitoneal node biopsy was performed and indicated a benign inflammatory process with organisms compatible with fungal yeast. Treatment with amphotericin B followed by itraconazole was initiated in spite of negative cerebrospinal fluid (CSF) cultures and proved effective in mitigating associated CNS lesions and resolving neurologic deficits. The patient was discharged 3 weeks later in stable condition. Six weeks later, his left basal ganglia mass decreased. Early recognition of symptoms and proper steps is key in improving outcomes of CNS histoplasmosis. Aggressive medical management is possible in the treatment of intracranial deep mass lesions, and disseminated histoplasmosis with CNS involvement can be appropriately diagnosed and treated, despite negative CSF and serology studies.
Background and purposeThe pathogenesis of brain injury after intracerebral hemorrhage is thought to be due to mechanical damage followed by ischemic, cytotoxic, and inflammatory changes in the underlying and surrounding tissue.In recent years, there has been a greater research interest into the various inflammatory biomarkers and growth factors that are secreted during intracerebral hemorrhage. The biomarkers investigated in this study are tumor necrosis factor alpha (TNF alpha), C-reactive protein (CRP), homocysteine (Hcy), and vascular endothelial growth factor (VEGF). The aim of this study was to further investigate the effects of these biomarkers in predicting the acute severity outcome of intracerebral hemorrhage (ICH).MethodsWe conducted a retrospective chart review of patients with spontaneous ICH with TNF alpha, CRP, VEGF, and Hcy levels drawn on admission. Forty-two patients with spontaneous ICH with at least one of the above labs were included in the study. Primary outcomes included death, Glasgow Coma Scale (GCS) on admission, early neurologic decline (END), and hemorrhage size. Secondary outcomes included GCS on discharge, ICH score, functional outcome risk stratification scale of intracerebral hemorrhage (FUNC score), change in hemorrhage size, need for surgical intervention, and length of intensive care unit (ICU) stay.ResultsForty-two patients with spontaneous intracerebral hemorrhage (ICH) were analyzed, 12 patients (28.5%) required surgical intervention, and four patients (9.5%) died. Only low VEGF serum values were found to predict mortality. TNF alpha, CRP, Hcy, and VEGF levels in our patients with ICH were not found to predict early neurologic decline and were not correlated with GCS on admission, initial hemorrhage size, change in hemorrhage size, need for surgical intervention, ICH score, FUNC score, midline shift, and length of ICU stay. CRP and Hcy were elevated in 58% and 31% of patients tested, respectively. GCS on admission and ICH score were significantly associated with mortality.ConclusionAfter careful statistical review of the data obtained from this patient population, only low VEGF values were found to be a significant predictor of mortality. However, elevated CRP and Hcy levels were associated with a non-significant trend in hemorrhage size and mortality suggesting that CRP and Hcy-lowering therapies may decrease hemorrhagic stroke risk and severity.
The actions of neurons are dependent on electrochemical signal pathways mediated by neurotransmitters and create measurable electrical charges. These charges have been found to be measurable through neuroimaging technologies and now through a novel non-contact non-invasive sensor without supercooling. Identifying whether this technology can be appropriately interpreted with synchronized motor well-defined activities in vivo may allow for further clinical applications. MethodsA non-contact, non-invasive helmet constructed and modified using shielding technology with proprietary magnetic field sensors was utilized to measure the brain's electromagnetic field (EMF). Human volunteers donned helmets and were asked to perform repetitive tapping exercises in order to identify waves consistent with tapping from the left and right hemispheres. A gyroscope was utilized to ensure that measured waves were not from micro-movement but were from neuronal firing. Multiple individuals were tested to evaluate the reproducibility of tapping and commonalities between individuals ResultsRight and left-sided tapping generated discernible wave changes from baseline measurements obtained by the helmet without a subject as well as differed from when the subject was at rest. Wave patterns varied from person to person but were overall similar in each subject individually. Shielding was necessary to identify signals but EMF was identified when shielding was transitioned from around the helmet to within the helmet design. ConclusionIt is possible to measure in-vivo electromagnetic fields generated by the human brain generated by stereotyped tasks in a non-contact non-invasive manner. These waves were reliably obtained within each individual with some variability in morphology from subject to subject however were similar in each subject. Signals varied based on activity and stereotyped motor activities were identified. A helmet using shielding technology within the helmet itself was able to effectively identify EMF signals. Future analysis may focus on translating these waves into functional mapping for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.