This paper presents an overview of SPIRou, the new-generation near-infrared spectropolarimeter / precision velocimeter recently installed on the 3.6-m Canada-France-Hawaii Telescope (CFHT). Starting from the two main science goals, namely the quest for planetary systems around nearby M dwarfs and the study of magnetized star / planet formation, we outline the instrument concept that was designed to efficiently address these forefront topics, and detail the in-lab and on-sky instrument performances measured throughout the intensive testing phase that SPIRou was submitted to before passing the final acceptance review in early 2019 and initiating science observations. With a central position among the newly started programmes, the SPIRou Legacy Survey (SLS) Large Programme was allocated 300 CFHT nights until at least mid 2022. We also briefly describe a few of the first results obtained in the various science topics that SPIRou started investigating, focusing in particular on planetary systems of nearby M dwarfs, transiting exoplanets and their atmospheres, magnetic fields of young stars, but also on alternate science goals like the atmospheres of M dwarfs and the Earth’s atmosphere. We finally conclude on the essential role that SPIRou and the CFHT can play in coordination with forthcoming major facilities like the JWST, the ELTs, PLATO and ARIEL over the decade.
NFIRAOS is a laser guide star multiconjugate adaptive optics system-a practical approach to providing diffraction limited image quality in the NIR over a 30" field of view, with high sky coverage. This will enable a wide range of TMT science that depends upon the large corrected field of view and high precision astrometry and photometry. We review recent progress developing the design and conducting performance estimates for NFIRAOS.
NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical subsystems within an optics enclosure cooled to precisely-30˚C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument's science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.