Despite the extensive use of photographic identification methods to investigate humpback whales in the North Pacific, few quantitative analyses have been conducted. We report on a comprehensive analysis of interchange in the North Pacific among three wintering regions (Mexico, Hawaii, and Japan) each with two to three subareas, and feeding areas that extended from southern California to the Aleutian Islands. Of the 6,413 identification photographs of humpback whales obtained by 16 independent research groups between 1990 and 1993 and examined for this study, 3,650 photographs were determined to be of suitable quality. A total of 1,241 matches was found by two independent matching teams, identifying 2,712 unique whales in the sample (seen one to five times). Site fidelity was greatest at feeding areas where there was a high rate of resightings in the same area in different years and a low rate of interchange among different areas. Migrations between winter regions and feeding areas did not follow a simple pattern, although highest match rates were found for whales that moved between Hawaii and southeastern Alaska, and between mainland and Baja Mexico and California. Interchange among subareas of the three primary wintering regions was extensive for Hawaii, variable (depending on subareas) for Mexico, and low for Japan and reflected the relative distances among subareas. Interchange among these primary wintering regions was rare. This study provides the first quantitative assessment of the migratory structure of humpback whales in the entire North Pacific basin.
Despite their world‐wide distribution throughout the tropics and subtropics, false killer whales (Pseudorca crassidens) are one of the lesser‐known large odontocetes. Genetic evidence indicates a demographically isolated population around the main Hawaiian Islands. We examine site fidelity, movements and association patterns in this population using data from directed surveys and opportunistic photographs from 1986 to 2007. This species was only infrequently encountered, and while found in depths from 38 to 4,331 m, sighting rates were greatest in depths >3,000 m. We photo‐identified 152 distinctive individuals. Resighting rates were high, with an average of 76.8% of distinctive individuals within groups documented on more than one occasion. Most (86.6%) were linked by association into a single social network; only one large group (16 distinctive individuals), documented the farthest offshore (42–70 km), did not link by association to that large network, and may be part of an offshore population. Individual movements of up to 283 km were documented, with a large proportion of individuals moving among islands. Individuals were resighted up to 20.1 yr after first being documented, showing long‐term fidelity to the islands. Repeated associations among individuals were documented for up to 15 yr, and association analyses indicate preferred associations and strong bonds among individuals.
Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near‐shore among the main Hawaiian Islands. To assess population structure, we photo‐identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow‐water distribution, and numerous within‐year and between‐year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4‐island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4‐islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island‐associated common bottlenose dolphins around the main Hawaiian islands.
We examined the incidence of rake mark scars from killer whales Orcinus orca on the flukes of humpback whales Megaptera novaeangliae throughout the North Pacific to assess geographic variation in predation pressure. We used 3650 identification photographs from 16 wintering or feeding areas collected during 1990 to 1993 to determine conservative estimates in the percentage of whales with rake mark scarring. Dramatic differences were seen in the incidence of rake marks among regions, with highest rates on wintering grounds off Mexico (26 vs. 14% at others) and feeding areas off California (20 vs. 6% at others), 2 areas between which humpback whales migrate. Although attacks are rarely witnessed, the prevalence of scars demonstrates that a substantial portion of animals are attacked, particularly those that migrate between California and Mexico. Our data also suggest that most attacks occur at or near the wintering grounds in the eastern North Pacific. The prevalence of attacks indicates that killer whale predation has the potential to be a major cause of mortality and a driving force in migratory behavior; however, the location of the attacks is inconsistent with the hypothesis that animals migrate to tropical waters to avoid predation. Our conclusion is that, at least in recent decades, attacks are made primarily on calves at the wintering grounds; this contradicts the hypothesis that killer whales historically preyed heavily on large whales in highlatitude feeding areas in the North Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.