Objective To compare the predictive performance of estimated fetal weight (EFW) percentiles, according to eight growth standards, to detect fetuses at risk for adverse perinatal outcome. Methods This was a retrospective cohort study of 3437 African‐American women. Population‐based (Hadlock, INTERGROWTH‐21st, World Health Organization (WHO), Fetal Medicine Foundation (FMF)), ethnicity‐specific (Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)), customized (Gestation‐Related Optimal Weight (GROW)) and African‐American customized (Perinatology Research Branch (PRB)/NICHD) growth standards were used to calculate EFW percentiles from the last available scan prior to delivery. Prediction performance indices and relative risk (RR) were calculated for EFW < 10th and > 90th percentiles, according to each standard, for individual and composite adverse perinatal outcomes. Sensitivity at a fixed (10%) false‐positive rate (FPR) and partial (FPR < 10%) and full areas under the receiver‐operating‐characteristics curves (AUC) were compared between the standards. Results Ten percent (341/3437) of neonates were classified as small‐for‐gestational age (SGA) at birth, and of these 16.4% (56/341) had at least one adverse perinatal outcome. SGA neonates had a 1.5‐fold increased risk of any adverse perinatal outcome (P < 0.05). The screen‐positive rate of EFW < 10th percentile varied from 6.8% (NICHD) to 24.4% (FMF). EFW < 10th percentile, according to all standards, was associated with an increased risk for each of the adverse perinatal outcomes considered (P < 0.05 for all). The highest RRs associated with EFW < 10th percentile for each adverse outcome were 5.1 (95% CI, 2.1–12.3) for perinatal mortality (WHO); 5.0 (95% CI, 3.2–7.8) for perinatal hypoglycemia (NICHD); 3.4 (95% CI, 2.4–4.7) for mechanical ventilation (NICHD); 2.9 (95% CI, 1.8–4.6) for 5‐min Apgar score < 7 (GROW); 2.7 (95% CI, 2.0–3.6) for neonatal intensive care unit (NICU) admission (NICHD); and 2.5 (95% CI, 1.9–3.1) for composite adverse perinatal outcome (NICHD). Although the RR CIs overlapped among all standards for each individual outcome, the RR of composite adverse perinatal outcome in pregnancies with EFW < 10th percentile was higher according to the NICHD (2.46; 95% CI, 1.9–3.1) than the FMF (1.47; 95% CI, 1.2–1.8) standard. The sensitivity for composite adverse perinatal outcome varied substantially between standards, ranging from 15% for NICHD to 32% for FMF, due mostly to differences in FPR; this variation subsided when the FPR was set to the same value (10%). Analysis of AUC revealed significantly better performance for the prediction of perinatal mortality by the PRB/NICHD standard (AUC = 0.70) compared with the Hadlock (AUC = 0.66) and FMF (AUC = 0.64) standards. Evaluation of partial AUC (FPR < 10%) demonstrated that the INTERGROWTH‐21st standard performed better than the Hadlock standard for the prediction of NICU admission and mechanical ventilation (P < 0.05 for both). Although fetuses with EFW > 90t...
Objectives To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. Study design This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8–16, 16.1–22, 22.1–28, 28.1–32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. Results We found that 1) multi-protein models at 16.1–22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1–28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1–32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1–28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1–22 weeks; 87% versus 81% at 22.1–28 weeks; and 90% versus 85% at 28.1–32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1–22 weeks). Conclusion We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.