Millions of computer owners worldwide contribute computer time to the search for extraterrestrial intelligence, performing the largest computation ever.
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
We report on a search for engineered signals from a sample of 692 nearby stars using the Robert C. Byrd Green Bank Telescope, undertaken as part of the Breakthrough Listen Initiative search for extraterrestrial intelligence. Observations were made over 1.1-1.9 GHz (L band), with three sets of five-minute observations of the 692 primary targets, interspersed with five-minute observations of secondary targets. By comparing the "ON" and "OFF" observations, we are able to identify terrestrial interference and place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. During the analysis, 11 events passed our thresholding algorithm, but a detailed analysis of their properties indicates that they are consistent with known examples of anthropogenic radio-frequency interference. We conclude that, at the time of our observations, none of the observed systems host high-duty-cycle radio transmitters emitting between 1.1 and 1.9 GHz with an Equivalent Isotropic Radiated Power of ∼10 13 W, which is readily achievable by our own civilization. Our results suggest that fewer than ∼0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey.
A number of experiments are currently working towards a measurement of the 21 cm signal from the Epoch of Reionization. Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼ 0.1 km 2 collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described "wedge" footprint in k-space. Uncertainties in the reionization history are accounted for using a series of simulations which vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the IGM. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km 2 of collecting area is enough to ensure a very high significance ( 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.
We report the first detections of the repeating fast radio burst source FRB 121102 above 5.2 GHz. Observations were performed using the 4−8 GHz receiver of the Robert C. Byrd Green Bank Telescope with the Breakthrough Listen digital backend. We present the spectral, temporal and polarization properties of 21 bursts detected within the first 60 minutes of a total 6-hour observations. These observations comprise the highest burst density yet reported in the literature, with 18 bursts being detected in the first 30 minutes. A few bursts clearly show temporal sub-structures with distinct spectral properties.These sub-structures superimpose to provide enhanced peak signal-to-noise ratio at higher trial dispersion measures. Broad features occur in ∼ 1 GHz wide subbands that typically differ in peak frequency between bursts within the band.Finer-scale structures (∼ 10 − 50 MHz) within these bursts are consistent with that expected from Galactic diffractive interstellar scintillation. The bursts exhibit nearly 100% linear polarization, and a large average rotation measure of 9.359±0.012 × 10 4 rad m −2 (in the observer's frame). No circular polarization was found for any burst. We measure an approximately constant polarization position angle in the 13 brightest bursts. The peak flux densities of the reported bursts have average values (0.2±0.1 Jy), similar to those seen at lower frequencies (< 3 GHz), while the average burst widths (0.64±0.46 ms) are relatively narrower.Subject headings:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.