OBJECTIVEMeningiomas at the falcotentorial junction represent a rare subgroup of complex meningiomas. Debate remains regarding the appropriate treatment strategy for and optimal surgical approach to these tumors, and surgical outcomes have not been well described in the literature. The authors reviewed their single-institution experience in the management, approach selection, and outcomes for patients with falcotentorial meningiomas.METHODSFrom the medical records, the authors identified all patients with falcotentorial meningiomas treated with resection at the Barrow Neurological Institute between January 2007 and October 2017. Perioperative clinical, surgical, and radiographic data were retrospectively collected. For patients who underwent the supracerebellar infratentorial approach, the tentorial angle was defined as the angle between the line joining the nasion with the tuberculum sellae and the tentorium in the midsagittal plane.RESULTSFalcotentorial meningiomas occurred in 0.97% (14/1441) of the patients with meningiomas. Most of the patients (13/14) were female, and the mean patient age was 59.8 ± 11.3 years. Of 17 total surgeries (20 procedures), 11 were single-stage primary surgeries, 3 were two-stage primary surgeries (6 procedures), 2 were reoperations for recurrence, and 1 was a reoperation after surgery had been aborted because of brain edema. Hydrocephalus was present in 5 of 17 cases, 4 of which required additional treatment. Various approaches were used, including the supracerebellar infratentorial (4/17), occipital transtentorial/transfalcine (4/17), anterior interhemispheric transsplenial (3/17), parietal transventricular (1/17), torcular (2/17), and staged supracerebellar infratentorial and occipital transtentorial/transfalcine (3/17) approaches. Of the 17 surgeries, 9 resulted in Simpson grade IV resection, and 3, 1, and 4 surgeries resulted in Simpson grades III, II, and I resection, respectively. The tentorial angle in cases with Simpson grade I resection was significantly smaller than in those with an unfavorable resection grade (43.3° ± 4.67° vs 54.0° ± 3.67°, p = 0.04). Complications occurred in 10 of 22 approaches (17 surgeries) and included visual field defects (6 cases, 2 permanent and 4 transient), hemiparesis (2 cases), hemidysesthesia (1 case), and cerebellar hematoma (1 case).CONCLUSIONSFalcotentorial meningiomas are challenging lesions. A steep tentorial angle is an unfavorable preoperative radiographic factor for achieving maximal resection with the supracerebellar infratentorial approach. Collectively, the study findings show that versatility is required to treat patients with falcotentorial meningiomas and that treatment goals and surgical approach must be individualized to obtain optimal surgical results.
Background: Fluorescein sodium (FNa) is a fluorescent drug with a long history of use for assessing retinal blood flow in ophthalmology; however, its application in vascular neurosurgery is only now gaining popularity. This review summarizes the current knowledge about using FNa videoangiography in vascular neurosurgery.Methods: We performed a literature review on the usage of FNa for fluorescent videoangiography procedures in neurosurgery. We analyzed methods of injection, dosages of FNa, visualizing platforms, and interpretation of FNa videoangiography. We also reviewed practical applications of FNa videoangiography during various vascular neurosurgeries.Results: FNa videoangiography can be performed with intraarterial (intracarotid) or intravenous dye injections. Both methods provide excellent resolution with enhanced fluorescence that shows intravascular blood flow on top of visible surrounding anatomy, and both allow simultaneous purposeful microsurgical manipulations. Although it is invasive, an intracarotid FNa injection results in faster contrast appearance and higher-intensity fluorescence and requires a lower dose per injection (reported range, 1–50 mg) compared with peripheral intravenous FNa injection (reported range, 75–2,000 mg or 1–1.5 mg/kg body weight). Four optical excitation/detection tools for FNa videoangiography have been successfully used: conventional xenon-light operating microscope with a special filter set, pencil-type light-emitting diode probe with a filter set, laser-illumination operating microscope, and an endoscope with a filter set. FNa videoangiography was reported to be feasible and useful in various clinical scenarios, such as examining the feeders and drainers in arteriovenous malformation surgery, checking the patency of a microvascular anastomosis, and assessing blood flow during aneurysm clipping. FNa videoangiography can be repeated during the same procedure and used along with indocyanine green (ICG) videoangiography.Conclusions: Compared with ICG videoangiography, FNa videoangiography has the advantages of enabling real-time inspection and better visualization at deep locations; however, thick vessel walls limit visualization of FNa in larger vessels. FNa videoangiography is a useful tool in multiple neurovascular scenarios and merits further studies to establish its clinical value.
Indocyanine green videoangiography (ICG-VA) is a near-infrared range fluorescent marker used for intraoperative real-time assessment of flow in cerebrovascular surgery. Given its high spatial and temporal resolution, ICG-VA has been widely established as a useful technique to perform a qualitative analysis of the graft patency during revascularization procedures. In addition, this fluorescent modality can also provide valuable qualitative and quantitative information regarding the cerebral blood flow within the bypass graft and in the territories supplied. Digital subtraction angiography (DSA) is considered to be the gold standard diagnostic modality for postoperative bypass graft patency assessment. However, this technique is time and labor intensive and an expensive interventional procedure. In contrast, ICG-VA can be performed intraoperatively with no significant addition to the total operative time and, when used correctly, can accurately show acute occlusion. Such time-sensitive ischemic injury detection is critical for flow reestablishment through direct surgical management. In addition, ICG has an excellent safety profile, with few adverse events reported in the literature. This review outlines the chemical behavior, technical aspects, and clinical implications of this tool as an intraoperative adjunct in revascularization procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.