Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.
The molecular cloning of cDNAs encoding murine fibroblast growth factor-13 (FGF-13/FHF-2) and three isoforms of murine FGF-12 (FHF-1) is described. Like their highly conserved human counterparts, murine FGF-12 and FGF-13 are part of a distinct subfamily of FGF-like proteins characterized by a greater degree of amino acid sequence cross-homology and by conserved N-terminal domains which do not include secretion signal sequences. In addition to their expression in several adult tissues, both of these FGF genes are prominently and regionally expressed in midgestation mouse embryos, as revealed by in situ hybridization. Fgf12 and fgf13. RNAs were detected in developing central nervous system in cells outside the proliferating ependymal layer, and fgf13 RNA was also found throughout the peripheral nervous system. Fgf12 is expressed in developing soft connective tissue of the limb skeleton and in presumptive connective tissue linking vertebrae and ribs. Both FGF genes are also expressed in the myocardium of the heart, with fgf12 RNA found only in the atrial chamber and fgf13 RNA detected in both atrium and ventricle. On the basis of their novel structure and patterns of expression, FGF-12 and FGF-13 are anticipated to perform embryonic functions distinct from other known FGF molecules.
Background: Cetuximab, a monoclonal antibody targeting Epidermal Growth Factor Receptor (EGFR), is currently used in metastatic colorectal cancer (mCRC), but predictive factors for therapeutic response are lacking. Mutational status of KRAS and EGFR, and EGFR copy number are potential determinants of cetuximab activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.