Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated alpha subunit and a constitutively expressed beta subunit. Although HIF-1 is regulated mainly by oxygen tension through the oxygen-dependent degradation of its alpha subunit, in vitro it can also be modulated by cytokines, hormones and genetic alterations. To investigate HIF-1 activation in vivo, we determined the spatial and temporal distribution of HIF-1 in healthy mice subjected to varying fractions of inspiratory oxygen. Immunohistochemical examination of brain, kidney, liver, heart, and skeletal muscle revealed that HIF-1alpha is present in mice kept under normoxic conditions and is further increased in response to systemic hypoxia. Moreover, immunoblot analysis showed that the kinetics of HIF-1alpha expression varies among different organs. In liver and kidney, HIF-1alpha reaches maximal levels after 1 h and gradually decreases to baseline levels after 4 h of continuous hypoxia. In the brain, however, HIF-1alpha is maximally expressed after 5 h and declines to basal levels by 12 h. Whereas HIF-1beta is constitutively expressed in brain and kidney nuclear extracts, its hepatic expression increases concomitantly with HIF-1alpha. Overall, HIF-1alpha expression in normoxic mice suggests that HIF-1 has an important role in tissue homeostasis.
The condition can be classified simply into atraumatic-idiopathic (7.0 per cent) and atraumatic-pathological (93.0 per cent) splenic rupture. Splenomegaly, advanced age and neoplastic disorders are associated with increased ASR-related mortality.
Organ xenografts under certain circumstances survive in the presence of anti-graft antibodies and complement, a situation referred to as "accommodation." We find that the endothelial cells (ECs) in hamster hearts that accommodate themselves in rats express genes, such as A20 and bcl-2, that in vitro protect ECs from apoptosis and prevent upregulation in those cells of proinflammatory genes such as cytokines, procoagulant and adhesion molecules. Hearts that are rejected do not express these genes. In addition, vessels of rejected hearts show florid transplant arteriosclerosis whereas those of accommodated hearts do not. Accommodated xenografts have an ongoing T helper cell type 2 (Th2) cytokine immune response, whereas the rejected grafts have a Th1 response. We propose a model for factors that contribute to the survival of xenografts and the avoidance of transplant arteriosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.