The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein that plays a variety of roles in the viral life cycle including replication, transcription, and genome packaging. Despite its critical and multifunctional nature, the molecular details that underlie how N protein mediates these functions are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to the function of SARS-CoV-2 N protein. N protein contains three intrinsically disordered regions and two folded domains. All three disordered regions are highly dynamic and contain regions of transient helicity that appear to act as local binding interfaces for protein-protein or protein-RNA interactions. The two folded domains do not significantly interact with one another, such that full-length N protein is a flexible and multivalent RNA binding protein. As observed for other proteins with similar molecular features, we found that N protein undergoes liquid-liquid phase separation when mixed with RNA. Polymer models predict that the same multivalent interactions that drive phase separation also engender RNA compaction. We propose a simple model in which symmetry breaking through specific binding sites promotes the formation of metastable single-RNA condensate, as opposed to large multi-RNA phase separated droplets. We speculate that RNA compaction to form dynamic single-genome condensates may underlie the early stages of genome packaging. As such, assays that measure how compounds modulate phase separation could provide a convenient tool for identifying drugs that disrupt viral packaging.
It is unclear what role the experimental drug and convalescent plasma had in the recovery of these patients. Prospective clinical trials are needed to delineate the role of investigational therapies in the care of patients with EVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.