Interindividual gene copy-number variation (CNV) of complement component C4 and its associated polymorphisms in gene size (long and short) and protein isotypes (C4A and C4B) probably lead to different susceptibilities to autoimmune disease. We investigated the C4 gene CNV in 1,241 European Americans, including patients with systemic lupus erythematosus (SLE), their first-degree relatives, and unrelated healthy subjects, by definitive genotyping and phenotyping techniques. The gene copy number (GCN) varied from 2 to 6 for total C4, from 0 to 5 for C4A, and from 0 to 4 for C4B. Four copies of total C4, two copies of C4A, and two copies of C4B were the most common GCN counts, but each constituted only between one-half and three-quarters of the study populations. Long C4 genes were strongly correlated with C4A (R=0.695; P<.0001). Short C4 genes were correlated with C4B (R=0.437; P<.0001). In comparison with healthy subjects, patients with SLE clearly had the GCN of total C4 and C4A shifting to the lower side. The risk of SLE disease susceptibility significantly increased among subjects with only two copies of total C4 (patients 9.3%; unrelated controls 1.5%; odds ratio [OR] = 6.514; P=.00002) but decreased in those with > or =5 copies of C4 (patients 5.79%; controls 12%; OR=0.466; P=.016). Both zero copies (OR=5.267; P=.001) and one copy (OR=1.613; P=.022) of C4A were risk factors for SLE, whereas > or =3 copies of C4A appeared to be protective (OR=0.574; P=.012). Family-based association tests suggested that a specific haplotype with a single short C4B in tight linkage disequilibrium with the -308A allele of TNFA was more likely to be transmitted to patients with SLE. This work demonstrates how gene CNV and its related polymorphisms are associated with the susceptibility to a human complex disease.
A B S T R A C T Previous inThis resulted in an "erythrocyte fraction" beneath the percoll that contained the IC bound to erythrocytes, and a "plasma/buffy coat fraction" above the percoll that contained the IC in plasma and IC bound to buffy coat cells. Analysis of these data showed that the majority of the IC infused into the circulation rapidly became bound to erythrocytes. However, by 5 min after beginning the IC infusion, most of this IC load had been removed from the erythrocytes as they traversed the liver. In contrast, IC on erythrocytes did not deposit in kidney. The IC-bearing erythrocytes themselves were not trapped or detained by any organ. IC in the plasma/buffy coat fraction of blood were removed from the circulation but at a relatively low
Objective Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk. Methods APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression. Results Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01). Conclusion APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
It has long been known that the ITIM-bearing IgG Fc receptor (FcγRIIb, RIIb) is expressed on liver sinusoidal endothelial cells (LSEC) and that the liver is the major site of small immune complex (SIC) clearance. Thus, we proposed that RIIb of LSEC eliminates blood-borne small immune complexes (SIC), thereby controlling IC-mediated autoimmune disease. Testing this hypothesis we found most RIIb of the mouse, fully three-quarters, to be expressed in liver. Moreover, most (90%) liver RIIb was expressed in LSEC, the remainder in Kupffer cells (KC). An absent FcRγ in LSEC implied that RIIb is the sole FcγR expressed. Testing the capacity of liver RIIb to clear blood-borne SIC we infused mice intravenously with radioiodinated SIC made of ovalbumin and rabbit IgG anti-ovalbumin. Tracking decay of SIC from the blood, we found the RII KO strain to be severely deficient in eliminating SIC compared with the WT strain, terminal half-lives being, respectively, 6 and 1.5 hours. RIIb on LSEC, a major scavenger, keeps SIC blood concentrations low and minimizes pathologic deposition of inflammatory IC.
Plasma adiponectin levels are increased in patients with renal SLE compared to healthy controls and patients with nonrenal SLE. During renal but not nonrenal SLE flare, urine adiponectin levels increase significantly. Urine adiponectin may be a biomarker of renal SLE flare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.