The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross-linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was
SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK) designed to facilitate rapid prototyping, education and scientific activities via high level programming languages. ITK is a templated C++ library of image processing algorithms and frameworks for biomedical and other applications, and it was designed to be generic, flexible and extensible. Initially, ITK provided a direct wrapping interface to languages such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed ITK's complex templated interface, SimpleITK was designed to provide an easy to use and simplified interface to ITK's algorithms. It includes procedural methods, hides ITK's demand driven pipeline, and provides a template-less layer. Also SimpleITK provides practical conveniences such as binary distribution packages and overloaded operators. Our user-friendly design goals dictated a departure from the direct interface wrapping approach of WrapITK, toward a new facade class structure that only exposes the required functionality, hiding ITK's extensive template use. Internally SimpleITK utilizes a manual description of each filter with code-generation and advanced C++ meta-programming to provide the higher-level interface, bringing the capabilities of ITK to a wider audience. SimpleITK is licensed as open source software library under the Apache License Version 2.0 and more information about downloading it can be found at http://www.simpleitk.org.
This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.
Most noise reduction methods involve nonlinear processes, and objective evaluation of image quality can be challenging, since image noise cannot be fully characterized on the sole basis of the noise level at computed tomography (CT). Noise spatial correlation (or noise texture) is closely related to the detection and characterization of low-contrast objects and may be quantified by analyzing the noise power spectrum. High-contrast spatial resolution can be measured using the modulation transfer function and section sensitivity profile and is generally unaffected by noise reduction. Detectability of low-contrast lesions can be evaluated subjectively at varying dose levels using phantoms containing low-contrast objects. Clinical applications with inherent high-contrast abnormalities (eg, CT for renal calculi, CT enterography) permit larger dose reductions with denoising techniques. In low-contrast tasks such as detection of metastases in solid organs, dose reduction is substantially more limited by loss of lesion conspicuity due to loss of low-contrast spatial resolution and coarsening of noise texture. Existing noise reduction strategies for dose reduction have a substantial impact on lowering the radiation dose at CT. To preserve the diagnostic benefit of CT examination, thoughtful utilization of these strategies must be based on the inherent lesion-to-background contrast and the anatomy of interest. The authors provide an overview of existing noise reduction strategies for low-dose abdominopelvic CT, including analytic reconstruction, image and projection space denoising, and iterative reconstruction; review qualitative and quantitative tools for evaluating these strategies; and discuss the strengths and limitations of individual noise reduction methods.
Purpose: To determine whether the promise of high-density many-coil MRI receiver arrays for enabling highly accelerated parallel imaging can be realized in practice. Materials and Methods:A 128-channel body receiver-coil array and custom MRI system were developed. The array comprises two clamshells containing 64 coils each, with the posterior array built to maximize signal-to-noise ratio (SNR) and the anterior array design incorporating considerations of weight and flexibility as well. Phantom imaging and human body imaging were performed using a variety of reduction factors and 2D and 3D pulse sequences. Results:The ratio of SNR relative to a 32-element array of similar footprint was 1.03 in the center of an elliptical loading phantom and 1.7 on average in the outer regions. Maximum g-factors dropped from 5.5 (for 32 channels) to 2.0 (for 128 channels) for 4 ϫ 4 acceleration and from 25 to 3.3 for 5 ϫ 5 acceleration. Residual aliasing artifacts for a right/left (R/L) reduction factor of 8 in human body imaging were significantly reduced relative to the 32-channel array. Conclusion:MRI with a large number of receiver channels enables significantly higher acceleration factors for parallel imaging and improved SNR, provided losses from the coils and electronics are kept negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.