Ventral tegmental area (VTA) dopamine (DA) neurons in the brain’s reward circuit play a crucial role in mediating stress responses1–4 including determining susceptibility vs. resilience to social stress-induced behavioural abnormalities5. VTA DA neurons exhibit two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing6–8. Phasic firing of the neurons, which is well known to encode reward signals6,7,9, is upregulated by repeated social defeat stress, a highly validated mouse model of depression5,8,10–13. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no change in firing rate apparent in resilient individuals5,8. However, direct evidence linking—in real-time—DA neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here, we took advantage of the temporal precision and cell type- and projection pathway-specificity of optogenetics to demonstrate that enhanced phasic firing of these neurons mediates susceptibility to social defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing, in VTA DA neurons of mice undergoing a subthreshold social defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social defeat stress. Furthermore, we show differences in projection pathway-specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, while inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing pattern- and neural circuit-specific mechanisms of depression.
Significance Depression and anxiety have been linked to increased inflammation. However, we do not know if inflammatory status predates onset of disease or whether it contributes to depression symptomatology. We report preexisting individual differences in the peripheral immune system that predict and promote stress susceptibility. Replacing a stress-naive animal’s peripheral immune system with that of a stressed animal increases susceptibility to social stress including repeated social defeat stress (RSDS) and witness defeat (a purely emotional form of social stress). Depleting the cytokine IL-6 from the whole body or just from leukocytes promotes resilience, as does sequestering IL-6 outside of the brain. These studies demonstrate that the emotional response to stress can be generated or blocked in the periphery, and offer a potential new form of treatment for stress disorders.
Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depressionassociated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levelswereincreasedintheNAcofdepressedhumans,aneffectseeninbothmalesandfemales.LocaloverexpressionofDnmt3ainNAcrendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.