Rationale Epidemiologic evidence indicates that exposures to fine particulate matter air pollution (PM2.5) contribute to global burden of disease, primarily as a result of increased risk of cardiovascular morbidity and mortality. However, mechanisms by which PM2.5 exposure induces cardiovascular injury remain unclear. PM2.5-induced endothelial dysfunction and systemic inflammation have been implicated, but direct evidence is lacking. Objective To examine whether acute exposure to PM2.5 is associated with endothelial injury and systemic inflammation. Methods and Results Blood was collected from healthy, non-smoking, young adults over three study periods that included episodes of elevated PM2.5 levels. Microparticles and immune cells in blood were measured by flow cytometry, and plasma cytokine/growth factors were measured using multiplexing laser beads. PM2.5 exposure was associated with elevated levels of endothelial microparticles (annexin V+/CD41−/CD31+) including subtypes expressing arterial-, venous-, and lung-specific markers, but not microparticles expressing CD62+. These changes were accompanied by suppressed circulating levels of pro-angiogenic growth factors (EGF, sCD40L, PDGF, RANTES, GROα, and VEGF), and an increase in the levels of anti-angiogenic (TNFα, IP-10) and proinflammatory cytokines (MCP-1, MIP-1α/β, IL-6, and IL-1β), and markers of endothelial adhesion (sICAM-1 and sVCAM-1). PM2.5 exposure also was associated with an inflammatory response characterized by elevated levels of circulating CD14+, CD16+, CD4+, and CD8+, but not CD19+ cells. Conclusions Episodic PM2.5 exposures are associated with increased endothelial cell apoptosis, an anti-angiogenic plasma profile, and elevated levels of circulating monocytes, and T, but not B, lymphocytes. These changes could contribute to the pathogenic sequelae of atherogenesis and acute coronary events.
NF‐κB is constitutively activated in most human pancreatic adenocarcinoma, which is a deadly malignancy with a 5‐year survival rate of about 5%. In this work, we investigate whether microRNAs (miRNAs) contribute to NF‐κB activation in pancreatic cancer. We demonstrate that miR‐301a down‐regulates NF‐κB‐repressing factor (Nkrf) and elevates NF‐κB activation. As NF‐κB promotes the transcription of miR‐301a, our results support a positive feedback loop as a mechanism for persistent NF‐κB activation, in which miR‐301a represses Nkrf to elevate NF‐κB activity, which in turn promotes miR‐301a transcription. Nkrf was found down‐regulated and miR‐301a up‐regulated in human pancreatic adenocarcinoma tissues. Moreover, miR‐301a inhibition or Nkrf up‐regulation in pancreatic cancer cells led to reduced NF‐κB target gene expression and attenuated xenograft tumour growth, indicating that miR‐301a overexpression contributes to NF‐κB activation. Revealing this novel mechanism of NF‐κB activation by an miRNA offers new avenues for therapeutic interventions against pancreatic cancer.
Rationale Endothelial progenitor cells (EPCs) respond to SDF-1 through receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes induced EPCs dysfunction remains unknown. Objective To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. Methods and Results CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, while up-regulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein (ox-LDL) or high glucose (HG) also reduced CXCR7 expression, impaired tube formation and increased oxidative stress and apoptosis. The damaging effects of ox-LDL or HG were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus (CXCR7-EPCs) but not in EPCs transduced with control lentivirus (Null-EPCs). Most importantly, CXCR7-EPCs were superior to Null-EPCs for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that ox-LDL or HG inhibited Akt and GSK-3β phosphorylation, nuclear export of Fyn and nuclear localization of Nrf2, blunting Nrf2 downstream target genes HO-1, NQO-1 and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in CXCR7-EPCs. Furthermore, inhibition of PI3K/Akt prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. Conclusions Elevated expression of CXCR7 enhances EPC resistance to diabetes-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by an Akt/GSK-3β/Fyn pathway via increased activity of Nrf2.
Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde–hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH–aldehyde adducts were measured using gas chromatography–mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde–hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.