Alzheimer's disease (AD) is one of the most common neurodegenerative illnesses displaying the highest death rate in the elderly. However, the existing AD diagnostic system remains elusive due to lack of a technology that may ensure enough sensitivity and reproducibility, detection accuracy, and specificity. Herein, a straightforward approach is reported to realize lab‐on‐fiber (LoF) technology for AD biomarker detection based on a D‐shaped single‐mode fiber combined with nanometer‐scale metal‐oxide film. The proposed sensing system, which permits the generation of lossy‐mode resonance (LMR), remarkably increases the evanescent field of light guided through the fiber, and hence the fiber‐surrounding medium interaction. Moreover, such optical sensors are highly repeatable in results and can safely be embedded into a compact and stable microfluidic system. Herein, the specific detection of Tau protein (as one of the classical AD biomarkers that is highly correlated with AD progression) in a complex biofluid with a detection limit of 10−12 m and over a wide concentration range (10−3–10 μg mL−1) is successfully demonstrated. The proposed LoF biosensor is an appealing solution for rapid, sub‐microliter dose and highly sensitive detection of analytes at low concentrations, hereby having the potential toward early screening and personalized medicine in AD.
Background: Deregulation of ceramide and sphingomyelinlevels have been suggested tocontribute tothe pathogenesis of Alzheimer’s disease (AD).Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells.Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTLwith amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescencein HEK cells.The recombinant CERTL protein wasemployed to study interaction of CERTLwith amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes inAβ toxicity in neuroblastoma cells. CERTLwas overexpressed in neurons by adeno associatedvirus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results:Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTLin vivo over-expression hasa mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstratea crucial role of CERTL in regulatingceramidelevels in the brain, in amyloid plaque formation and neuroinflammation,thereby opening research avenuesfor therapeutic targets of AD and other neurodegenerative diseases.
Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.