Planet Politics is about rewriting and rethinking International Relations as a set of practices, both intellectual and organisational. We use the polemical and rhetorical format of the political manifesto to open a space for inter-disciplinary growth and debate, and for thinking about legal and institutional reform. We hope to begin a dialogue about both the limits of IR, and of its possibilities for forming alliances and fostering interdisciplinarity that can draw upon climate science, the environmental humanities, and progressive international law to respond to changes wrought by the Anthropocene and a changing climate.
We tested the hypothesis that chronic reduction in perfusion pressure and flow in the coronary circulation induces a state of myocardial "hibernation" characterized not only by a steady-state reduction in myocardial O2 consumption (MVO2) but also by evidence of persistent dilator reserve of the distal vasculature. Biochemical and morphological changes in the coronary vasculature were also assessed. Experiments were conducted in swine with an extraluminal coronary stenosis placed 4-32 wk before study. Stenosis reduced lumen diameter by approximately 80% at the time of final experimentation. Baseline, regional myocardial blood flow distal to the stenosis in both endocardial and epicardial layers was reduced vs. that of the normal zone. Vasodilator reserve persisted in both endocardial and epicardial layers of the stenosis zone. Flow increased in each layer in response to adenosine plus phenylephrine and failed to decline despite a marked reduction in perfusion pressure in response to adenosine alone. Regional MVO2 at baseline was reduced vs. historical controls without coronary stenosis. Protein synthesis rate in coronary vessels of the stenosis zone was reduced vs. that of the normal zone. Morphological responses of stenosis zone vessel walls were heterogeneous. Smaller microvessels exhibited mild hypertrophy of their walls, whereas walls of larger microvessels tended to atrophy. Thus chronic reduction in perfusion pressure and flow induces a state of myocardial hibernation characterized by a steady-state reduction in MVO2 in association with persistent dilator capacity. Biochemical and morphological changes occur in microvessel walls and may contribute to observed physiological responses.
Despite advances in left ventricular assist device (LVAD) technology, right ventricular failure (RVF) continues to be a complication after implantation. Most patients undergoing LVAD implantation have underlying right ventricular (RV) dysfunction (either as a result of prolonged LV failure or systemic disorders) that becomes decompensated post-implantation. Additional insults include intra-operative factors or a sudden increase in preload in the setting of increased cardiac output. The current literature estimates post-LVAD RVF from 3.9% to 53% using a diverse set of definitions. A few of the risk factors that have been identified include markers of cardiogenic shock (e.g., dependence on inotropes and Interagency Registry for Mechanically Assisted Circulatory Support profiles) as well as evidence of cardiorenal or cardiohepatic syndromes. Several studies have devised multivariable risk scores; however, their performance has been limited. A new functional assessment of RVF and a novel hepatic marker that describe cholestatic properties of congestive hepatopathy may provide additional predictive value. Furthermore, future studies can help better understand the relationship between pulmonary hypertension and post-LVAD RVF. To achieve our ultimate goal—to prevent and effectively manage RVF post-LVAD—we must start with a better understanding of the risk factors and pathophysiology. Future research on the different etiologies of RVF—ranging from acute post-surgical complication to late-onset RV cardiomyopathy—will help standardize definitions and tailor therapies appropriately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.