Abstract. The African Tropics are hotspots of modern-day land use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils, and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemical, and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes from soils to the atmosphere and, hence, future earth system dynamics. Here we describe version 1.0 of an open-access database created as part of the project “Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use” (TropSOC). TropSOC v1.0 (Doetterl et al., 2021, https://doi.org/10.5880/fidgeo.2021.009) contains spatially and temporally explicit data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of monitoring and sampling campaigns in the eastern Congo Basin and the East African Rift Valley system. The results of several laboratory experiments focusing on soil microbial activity, C cycling, and C stabilization in soils complement the dataset to deliver one of the first landscape-scale datasets to study the linkages and feedbacks between geology, geomorphology, and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows linking of a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC's data mark a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the Supplement provided as part of this paper or as a separate download via the websites of the Congo Biogeochemistry Observatory and GFZ Data Services where version updates to the database will be provided as the project develops.
Abstract. The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemically and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes (GHG) from soils to the atmosphere and, hence, future earth system dynamics. Here, we describe version 1.0 of an open access database created as part of the project “Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use” (TropSOC). TropSOC v1.0 contains spatial and temporal explicit data on soil, vegetation, environmental properties and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of several monitoring and sampling campaigns in the Eastern Congo Basin and the East African Rift Valley System. The results of several laboratory experiments focusing on soil microbial activity, C cycling and C stabilization in soils complement the dataset to deliver one of the first landscape scale datasets to study the linkages and feedbacks between geology, geomorphology and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows for linking a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC’s data marks a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the supplementary material provided as part of this manuscript or as a separate download via the websites of the Congo Biogeochemistry observatory and the GFZ data repository where version updates to the database will be provided as the project develops.
Abstract. Due to the rapidly growing population in tropical Africa, a substantial rise in food demand is predicted in upcoming decades, which will result in higher pressure on soil resources. However, there is limited knowledge on soil redistribution dynamics following land conversion into arable land in tropical Africa that is partly caused by infrastructure limitations for long-term landscape-scale monitoring. In this study, fallout radionuclides 239+240Pu are used to assess soil redistribution along topographic gradients at two cropland sites and at three nearby pristine forest sites located in the DR Congo, Uganda and Rwanda. In the study area, a 239+240Pu baseline inventory is found that is higher than typically expected for tropical regions (mean forest inventory 41 Bq m−2). Pristine forests show no indication of soil redistribution based on 239+240Pu along topographical gradients. In contrast, soil erosion and sedimentation on cropland reached up to 37 cm (81 Mg ha−1 yr−1) and 40 cm (87 Mg ha−1 yr−1) within the last 55 years, respectively. Cropland sites show high intra-slope variability with locations showing severe soil erosion located in direct proximity to sedimentation sites. This study shows the applicability of a valuable method to assess tropical soil redistribution and provides insight into soil degradation rates and patterns in one of the most socio-economically and ecologically vulnerable regions of the world.
Summary The lack of field‐based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors – such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes – remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below‐ to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above‐ and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.