Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics, based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against gram-negative Pseudomonas sp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed the peptidomimetics had a non-membrane-lytic mechanism of action and identified a homologue of the ß-barrel protein LptD (Imp/OstA), which functions in outer membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications. A synthesized antibiotic targets a protein involved in outer membrane biogenesis to selectively kill Pseudomonas pathogens.
1
Peptidomimetic Antibiotics Target Outer Membrane Biogenesis in
Pseudomonas aeruginosa
AbstractAntibiotics with new mechanisms of action are urgently required to combat the growing health
Data from both our own and literature studies of the biochemistry and inhibition of influenza virus endonuclease was combined with data on the mechanism of action and the likely active site mechanism to propose a pharmacophore. The pharmacophore was used to design a novel structural class of inhibitors, some of which were found to have activities similar to that of known influenza endonuclease inhibitors and were also antiviral in cell culture.
Inhibition of crucial protein–protein interactions, for example, between the p53 tumor suppressor (red in structure) and HDM2, a protein overexpressed in tumor cells, is possible with peptidomimetics having a β‐hairpin structure (yellow) mimicking the α‐helical protein epitope. These mimetics might be of direct value in the search for novel agents with tumor‐suppressor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.