Both the chaperonin- and MgATP-dependent reconstitution of unfolded ribulosebisphosphate carboxylase (Rubisco) and the uncoupled ATPase activity of chaperonin 60 (groEL) require ionic potassium. The spontaneous, chaperonin-independent reconstitution of Rubisco, observed at 15 but not at 25 degrees C, requires no K+ and is actually inhibited by chaperonin 60, with which the unfolded or partly folded Rubisco forms a stable binary complex. The chaperonin-dependent reconstitution of Rubisco involves the formation of a complex between chaperonin 60 and chaperonin 10 (groES). Formation of this complex almost completely inhibits the uncoupled ATPase activity of chaperonin 60. Furthermore, although the formation of the chaperonin 60-chaperonin 10 complex requires the presence of MgATP, hydrolysis of ATP may not be required, since complex formation occurs in the absence of K+. The interaction of chaperonin 60 with unfolded or partly folded Rubisco does not require MgATP, K+, or chaperonin 10. However, discharge of the complex of chaperonin 60-Rubisco, which leads to the formation of active Rubisco dimers, requires chaperonin 10 and a coupled, K(+)-dependent hydrolysis of ATP. We propose that a role of chaperonin 10 is to couple the K(+)-dependent hydrolysis of ATP to the release of the folded monomers of the target protein from chaperonin 60.
By BLAST searching a large expressed sequence tag database for glutathione S-transferase (GST) sequences we have identified 25 soybean (Glycine max) and 42 maize (Zea mays) clones and obtained accurate full-length GST sequences. These clones probably represent the majority of members of the GST multigene family in these species. Plant GSTs are divided according to sequence similarity into three categories: types I, II, and III. Among these GSTs only the active site serine, as well as another serine and arginine in or near the “G-site” are conserved throughout. Type III GSTs have four conserved sequence patches mapping to distinct structural features. Expression analysis reveals the distribution of GSTs in different tissues and treatments: Maize GSTI is overall the most highly expressed in maize, whereas the previously unknown GmGST 8 is most abundant in soybean. Using DNA microarray analysis we observed increased expression among the type III GSTs after inducer treatment of maize shoots, with different genes responding to different treatments. Protein activity for a subset of GSTs varied widely with seven substrates, and any GST exhibiting greater than marginal activity with chloro-2,4 dinitrobenzene activity also exhibited significant activity with all other substrates, suggesting broad individual enzyme substrate specificity.
Isoflavones have drawn much attention because of their benefits to human health. These compounds, which are produced almost exclusively in legumes, have natural roles in plant defense and root nodulation. Isoflavone synthase catalyzes the first committed step of isoflavone biosynthesis, a branch of the phenylpropanoid pathway. To identify the gene encoding this enzyme, we used a yeast expression assay to screen soybean ESTs encoding cytochrome P450 proteins. We identified two soybean genes encoding isoflavone synthase, and used them to isolate homologous genes from other leguminous species including red clover, white clover, hairy vetch, mung bean, alfalfa, lentil, snow pea, and lupine, as well as from the nonleguminous sugarbeet. We expressed soybean isoflavone synthase in Arabidopsis thaliana, which led to production of the isoflavone genistein in this nonlegume plant. Identification of the isoflavone synthase gene should allow manipulation of the phenylpropanoid pathway for agronomic and nutritional purposes.
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites.Engineering of herbicide tolerance in higher plants can be achieved in many ways: via introduction of an altered target protein that is insensitive to the herbicide, overexpression of a wild-type target, or modification of herbicide transport, compartmentation, or metabolism. Increasing metabolism may be the best strategy because the phytotoxic compound is chemically altered and there is no interference with primary metabolism and no residual herbicide remains in the plant. So far, most crops genetically modified for herbicide metabolism have been transformed with genes isolated from microorganisms (Duke, 1996); however, plants themselves offer a wide choice of herbicide-detoxifying enzymes. The introduction of different plant genes or appropriate alterations in expression levels in crop plants could be considered as an accelerated adjunct to classical breeding techniques to engender gene transfer between plants.The genes for herbicide-detoxifying enzymes in higher plants are just starting to be characterized. Efforts are focused on multigene families like those of glutathione S-transferases (McGonigle et al., 2000) or glycosyl transferases (Ross et al., 2001; Brazier et al., 2002), and cytochrome P450 monooxygenases . The latter, which is by far the largest family of enzymatic proteins in higher plants (272 P450 genes are found in the diminutive genome of Arabidopsis), offers the widest resource in terms of diversity and possible substrate specificity (http://drnelson.utmem.edu/cytochromep450.html; http://www.biobase.dk/P450/p450.shtml; Schuler, 19...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.