Carbon concrete polyacrylonitrile (PAN)/lignin-based carbon fiber (CF) composites are a new promising material class for the building industry. The replacement of the traditional heavy and corroding steel reinforcement by carbon fiber (CF)-based reinforcements offers many significant advantages: a higher protection of environmental resources because of lower CO2 consumption during cement production, a longer lifecycle and thus, much less damage to structural components and a higher degree of design freedom because lightweight solutions can be realized. However, due to cost pressure in civil engineering, completely new process chains are required to manufacture CF-based reinforcement structures for concrete. This article describes the necessary process steps in order to develop CF reinforcement: (1) the production of cost-effective CF using novel carbon fiber lines, and (2) the fabrication of CF rebars with different geometry profiles. It was found that PAN/lignin-based CF is currently the promising material with the most promise to meet future market demands. However, significant research needs to be undertaken in order to improve the properties of lignin-based and PAN/lignin-based CF, respectively. The CF can be manufactured to CF-based rebars using different manufacturing technologies which are developed at a prototype level in this study.
Several studies have shown the importance of carbon fibres (CF) for different high technology markets. In recent years, different fibre types with improved properties have been developed for those markets. Polyacrylonitrile (PAN) copolymers are the basic raw material (precursor) for these fibres in the predominant case. Improvements of the mechanical fibre properties have mainly been achieved by defect reduction during the manufacturing process. Thus, commercial carbon fibres with tensile strengths up to approx. 7000 MPa are currently available. It can be shown that the strengths can be further increased (in the direction of graphene properties) when the relationship between process conditions and defects due to manufacturing of the fibres is better understood. In this context, novel processes like electron beam crosslinking or UV‐activation have proven to be very promising. The article gives an overview about the current situation in the field of carbon fibres development and particularly shows recent shortcomings with respect to novel applications.
Carbon concrete PAN/lignin-based CF composites are a new promising material class for the building industry. The replacement of the traditional heavy and corroding steel reinforcement by carbon fiber (CF) based reinforcements offers many significant advantages: a higher protection of environmental resources because of lower CO2 consumption during cement production, a longer lifecycle and thus muss less damage in structural components and a higher degree of design freedom because lightweight solutions can be realized. However, due to cost pressure in civil engineering, completely new process chains are required to manufacture CF based reinforcement structures for concrete. The article describes the necessary process steps in order to develop CF reinforcement: (1) the production of cost-effective CF using novel carbon fiber lines, (2) the fabrication of CF rebars with different geometry profiles. It was found that PAN/lignin-based CF is currently the most promising material in order to meet the future market demands. However, significant research needs to be undertaken in order to improve the properties of lignin-based and PAN/lignin-based CF, respectively. The CF can be manufactured to CF-based rebars using different manufacturing technologies which have been developed on prototype level in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.