IntroductionAcute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI.MethodsWe performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection.ResultsModerate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P <0.002), none of which achieved an AUC >0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method.ConclusionsTwo novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI.Trial registrationClinicalTrials.gov number NCT01209169.
Human apolipoprotein E is the major apolipoprotein expressed in the brain and exists as three isoforms, designated E2, E3, and E4. Although evidence suggests that apolipoprotein E plays an important role in modifying systemic and brain inflammatory responses, there is little data investigating apoE isoform-specific effects in vivo. In this study, we compared the inflammatory responses of targeted-replacement mice expressing the human APOE3 and APOE4 genes after intravenous administration of lipopolysaccharide. Animals expressing the E4 allele had significantly greater systemic and brain elevations of the pro-inflammatory cytokines TNFalpha and IL-6 as compared with their APOE3 counterparts, suggesting an isoform-specific effect of the immunomodulatory properties of apoE. Furthermore, intravenous administration of a small apoE-mimetic peptide derived from the receptor-binding region of the apoE holoprotein (apoE-(133-149)) similarly suppressed both systemic and brain inflammatory responses in mice after lipopolysaccharide administration. These results suggest that apoE plays an isoform-specific role in mediating the systemic and brain inflammatory responses. Moreover, because exogenous administration of this apoE mimetic peptide is effective at suppressing both systemic and brain inflammation, it may represent a novel therapeutic strategy for diseases characterized by systemic or central nervous system inflammation, such as septic shock, multiple sclerosis, and traumatic brain injury.
Background and Purpose-The importance of perioperative cognitive decline has long been debated. We recently demonstrated a significant correlation between perioperative cognitive decline and long-term cognitive dysfunction. Despite this association, some still question the importance of these changes in cognitive function to the quality of life of patients and their families. The purpose of our investigation was to determine the association between cognitive dysfunction and long-term quality of life after cardiac surgery. Methods-After institutional review board approval and patient informed consent, 261 patients undergoing cardiac surgery with cardiopulmonary bypass were enrolled and followed for 5 years. Cognitive function was measured with a battery of tests at baseline, discharge, and 6 weeks and 5 years postoperatively. Quality of life was assessed with well-validated, standardized assessments at the 5-year end point. Results-Our results demonstrate significant correlations between cognitive function and quality of life in patients after cardiac surgery. Lower 5-year overall cognitive function scores were associated with lower general health and a less productive working status. Multivariable logistic and linear regression controlling for age, sex, education, and diabetes confirmed this strong association in the majority of areas of quality of life. Conclusions-Five
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.