An animal model of Leber hereditary optic neuropathy (LHON) was produced by introducing the human optic atrophy mtDNA ND6 P25L mutation into the mouse. Mice with this mutation exhibited reduction in retinal function by elecroretinogram (ERG), age-related decline in central smaller caliber optic nerve fibers with sparing of larger peripheral fibers, neuronal accumulation of abnormal mitochondria, axonal swelling, and demyelination. Mitochondrial analysis revealed partial complex I and respiration defects and increased reactive oxygen species (ROS) production, whereas synaptosome analysis revealed decreased complex I activity and increased ROS but no diminution of ATP production. Thus, LHON pathophysiology may result from oxidative stress.eber hereditary optic neuropathy (LHON), the first inherited mitochondrial (mt)DNA disease reported (1), is thought to be one of the most prevalent diseases caused by mtDNA missense mutations, having an estimated frequency of 15 in 100,000 (2). Most European LHON mutations occur in the mtDNA oxidative phosphorylation (OXPHOS) complex I (NADH:ubiquinone oxidoreductase or NADH dehydrogenase) genes, the three most common being the ND4 gene mutation at nucleotide G11778A causing an arginine 340 to histidine (R340H) substitution (1), the ND1 G3460A (A52T) mutation (3), and the ND6 T14484C (M64V) mutation (4). Milder LHON mutations are generally homoplasmic (pure mutant). In contrast, more severe mtDNA complex I ND gene mutations can cause basal ganglia degeneration presenting as dystonia or Leigh syndrome when homoplasmic but optic atrophy when heteroplasmic (mixed mutant and normal mtDNAs). Two examples of such mutations are ND6 G14459A (A72V) (5) and ND6 G14600A (P25L) (6).LHON generally presents in the second or third decade of life as acute or subacute onset of central vision loss, first in one eye and then in the other. The percentage of optic atrophy in patients varies markedly among pedigrees. Male patients are two to five times more likely to develop blindness than female patients (2), and maternal relatives who have not progressed to subacute optic atrophy can still show signs of visual impairment (7,8).In LHON, optic atrophy is associated with preferential loss of the central small-caliber optic nerve fibers of the papillomacular bundle, resulting in central scotoma but with sparing of the largercaliber peripheral fibers and retention of peripheral vision. The loss of the optic nerve fibers is attributed to the death of retinal ganglion cells (RGC) as a result of the high energy demand placed on the unmyelinated portion of the optic nerve fibers anterior to the lamina cribosa, an area associated with high mitochondrial density (2).Complex I is the largest and most intricate of the mitochondrial OXPHOS complexes. It is comprised of 45 subunits, 7 (ND1, -2, -3, -4, -4L, -5, and -6) of which are coded by the mtDNA (9). Complex I transfers electrons from NADH to ubiquinone, and the energy released from this redox reaction is coupled to pumping protons across the mitochondrial in...
Replacement of the carboxylic acid group of prostaglandin (PG) F 2␣ with a nonacidic moiety, such as hydroxyl, methoxy, or amido, results in compounds with unique pharmacology. Bimatoprost (AGN 192024) is also a pharmacologically novel PGF 2␣ analog, where the carboxylic acid is replaced by a neutral ethylamide substituent. Bimatoprost potently contracted the feline lung parenchymal preparation (EC 50 value of 35-55 nM) but exhibited no meaningful activity in a variety of PG-sensitive tissue and cell preparations. Its activity seemed unrelated to FP receptor stimulation according to the following evidence. 1) Bimatoprost exhibited no meaningful activity in tissues and cells containing functional FP receptors. 2) Bimatoprost activity in the cat lung parenchyma is not species-specific because its potent activity in this preparation could not be reproduced in cells stably expressing the feline FP receptor. 3) Radioligand binding studies using feline and human recombinant FP receptors exhibited minimal competition versus [3 H]17-phenyl PGF 2a for Bimatoprost. 4) Bimatoprost pretreatment did not attenuate PGF 2␣ -induced Ca 2ϩ signals in Swiss 3T3 cells. 5) Regional differences were apparent for Bimatoprost but not FP agonist effects in the cat lung. Bimatoprost reduced intraocular pressure in ocular normotensive and hypertensive monkeys over a 0.001 to 0.1% dose range. A single-dose and multiple-dose ocular distribution/metabolism studies using [ 3 H]Bimatoprost (0.1%) were performed. Within the globe, bimatoprost concentrations were 10-to 100-fold higher in anterior segment tissues compared with the aqueous humor. Bimatoprost was overwhelmingly the predominant molecular species identified at all time points in ocular tissues, indicating that the intact molecule reduces intraocular pressure.Eicosanoids and related fatty acids have long been the subject of extensive investigation. More recently, it has become apparent that the corresponding neutral lipids exist for several fatty acids (Devane et al
These results indicate that MEM could be useful for the treatment of ocular diseases, including diabetic retinopathy with neurodegeneration, elevated vitreoretinal VEGF protein levels, and increased BRB breakdown. In addition to the neuroprotective effect of this compound, MEM can reduce vascular changes seen in diabetic retinas. These data are the first to identify the vasculoprotective effect of MEM.
1 The polymerase chain reaction (PCR) was used in combination with plaque hybridization analysis to clone four variants of the EP3 prostaglandin receptor from a human small intestine cDNA library. 2 Three of these variants, i.e. the EP3A, EP3E and EP3D, share the same primary amino acid sequence except for their carboxyl termini, which diverge from one another at the same point, approximately 10 amino acids away from the end of the seventh membrane spanning domain of the receptor. The fourth variant (EP3A1) has a nucleotide coding sequence identical to EP3A but has a completely different 3' untranslated sequence. 3 The carboxyl termini of the three isoforms differ most obviously in length with the EP3A being the longest (41 amino acids) and the EP3E being the shortest (16 amino acids). They also differ in content with the EP3A containing 9 serine and threonines in its carboxyl terminus and the EP3E none. 4 Transient expression in eukaryotic cells showed that the human EP3 receptor variants had similar but not identical radioligand binding properties and differed in their functional coupling to second messenger pathways. Up to 3 pmol mg-' protein of [3H]-prostaglandin E2 binding could be obtained with more than 95% specific binding. Using a reporter gene assay, as a measure of intracellular cyclic AMP levels, the EP3A coupled more efficiently to the inhibition of adenylyl cyclase than did the EP3E. 5 PCR was used to confirm the presence of mRNAs encoding the four human EP3 receptor variants in tissues of the human small intestine, heart and pancreas. These findings indicate that the EP3 receptor variants identified here are likely to be expressed in tissues. The differences in the carboxyl termini at the protein level, and in the 3' untranslated regions at the mRNA level, could be profound in terms of the regulation and functional coupling of these receptor isoforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.