Introduction The overall survival in patients with gliomas has not significantly increased in the modern era, despite advances such as immunotherapy. This is in part due to their notorious ability to suppress local and systemic immune responses, severely restricting treatment efficacy. Methods We have reviewed the preclinical and clinical evidence for immunosuppression seen throughout the disease process in gliomas. This review aims to discuss the various ways that brain tumors, and gliomas in particular, co-opt the body’s immune system to evade detection and ensure tumor survival and proliferation. Results A multitude of mechanisms are discussed by which neoplastic cells evade detection and destruction by the immune system. These include tumor-induced T-cell and NK cell dysfunction, regulatory T-cell and myeloid-derived suppressor cell expansion, M2 phenotypic transformation in glioma-associated macrophages/microglia, upregulation of immunosuppressive glioma cell surface factors and cytokines, tumor microenvironment hypoxia, and iatrogenic sequelae of immunosuppressive treatments. Conclusions Gliomas create a profoundly immunosuppressive environment, both locally within the tumor and systemically. Future research should aim to address these immunosuppressive mechanisms in the effort to generate treatment options with meaningful survival benefits for this patient population.
In chronic infections and in cancer, persistent antigen stimulation under suboptimal conditions can lead to the induction of T-cell exhaustion. Exhausted T cells are characterized by an increased expression of inhibitory markers and a progressive and hierarchical loss of function. Although cancer-induced exhaustion in CD8 T cells has been well-characterized and identified as a therapeutic target (i.e., via checkpoint inhibition), in-depth analyses of exhaustion in other immune cell types, including CD4 T cells, is wanting. While perhaps attributable to the contextual discovery of exhaustion amidst chronic viral infection, the lack of thorough inquiry into CD4 T-cell exhaustion is particularly surprising given their important role in orchestrating immune responses through T-helper and direct cytotoxic functions. Current work suggests that CD4 T-cell exhaustion may indeed be prevalent, and as CD4 T cells have been implicated in various disease pathologies, such exhaustion is likely to be clinically relevant. Defining phenotypic exhaustion in the various CD4 T-cell subsets and how it influences immune responses and disease severity will be crucial to understanding collective immune dysfunction in a variety of pathologies. In this review, we will discuss mechanistic and clinical evidence for CD4 T-cell exhaustion in cancer. Further insight into the derivation and manifestation of exhaustive processes in CD4 T cells could reveal novel therapeutic targets to abrogate CD4 T-cell exhaustion in cancer and induce a robust antitumor immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.