Severe coronavirus disease 2019 (COVID‐19) is characterized by lung injury, cytokine storm, and increased neutrophil‐to‐lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID‐19 in infected individuals. Angiotensin‐converting enzyme‐2 (ACE2) is the receptor for SARS‐CoV‐2, the virus causing COVID‐19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID‐19‐related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor‐binding domain of the SARS‐CoV‐2 spike protein (RBD‐S) to mimic lung damage associated with COVID‐19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID‐19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI‐1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM‐1 and VCAM‐1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS‐CoV‐2‐infected individuals to prevent the progression toward severe COVID‐19.
The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.
The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in Escherichia coli, purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A450 nm = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.
Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.
Severe coronavirus disease 2019 (Covid-19) is characterized by lung injury, cytokine storm and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe Covid-19 in infected individuals. Angiotensin-converting enzyme-2 ACE-2) is the receptor for SARS-CoV-2, the virus causing Covid-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE-2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates Covid-19-related lung inflammation. We employed a pre-clinical mouse model using intra-tracheal instillation of a combination of polyinosinic:polycytidylic acid (poly-I:C) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with Covid-19. Histological analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill Covid-19 patients. Administration of the ADAM17 inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of pro-inflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17 inhibition. Thus, we propose inhibition of ADAM17 as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression towards severe Covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.