COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for identifying the functions to be executed as asynchronous parallel tasks and annotating them with annotations or standard Python decorators.\ud
A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.This work has been supported by the following institutions: the Spanish Government with grant SEV-2011-00067 of the Severo Ochoa Program and contract Computacion de Altas\ud
Prestaciones VI (TIN2012-34557); by the SGR programme (2014-SGR-1051) of the Catalan Government; by the project The Human Brain Project, funded by the European Commission\ud
under contract 604102; by the ASCETiC project funded by the European Commission under contract 610874; by the\ud
EUBrazilCloudConnect project funded by the European Commission under contract 614048; and by the Intel-BSC Exascale\ud
Lab collaboration.Peer ReviewedPostprint (published version
In the recent years, the improvement of software and hardware performance has made biomolecular simulations a mature tool for the study of biological processes. Simulation length and the size and complexity of the analyzed systems make simulations both complementary and compatible with other bioinformatics disciplines. However, the characteristics of the software packages used for simulation have prevented the adoption of the technologies accepted in other bioinformatics fields like automated deployment systems, workflow orchestration, or the use of software containers. We present here a comprehensive exercise to bring biomolecular simulations to the “bioinformatics way of working”. The exercise has led to the development of the BioExcel Building Blocks (BioBB) library. BioBB’s are built as Python wrappers to provide an interoperable architecture. BioBB’s have been integrated in a chain of usual software management tools to generate data ontologies, documentation, installation packages, software containers and ways of integration with workflow managers, that make them usable in most computational environments.
This work was supported by the European Commission through the Cooperation Programme under EUBra-BIGSEA Horizon 2020 Grant [Este projeto é resultante da 3a Chamada Coordenada BR-UE em Tecnologias da Informação e Comunicação (TIC), anunciada pelo Ministério de Ciência, Tecnologia e Inovação (MCTI)] under Grant 690116.
This paper presents a framework to easily build and execute parallel applications in container-based distributed computing platforms in a usertransparent way. The proposed framework is a combination of the COMP Superscalar (COMPSs) programming model and runtime, which provides a straightforward way to develop task-based parallel applications from sequential codes, and containers management platforms that ease the deployment of applications in computing environments (as Docker, Mesos or Singularity). This framework provides scientists and developers with an easy way to implement parallel distributed applications and deploy them in a one-click fashion. We have built a prototype which integrates COMPSs with different containers engines in different scenarios: i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster. We have evaluated the overhead in the building phase, deployment and execution of two benchmark applications compared to a Cloud testbed based on KVM and OpenStack and to the usage of bare metal nodes. We have observed an important gain in comparison to cloud environments during the building and deployment phases. This enables better adaptation of resources with respect to the computational load. In contrast, we detected an extra overhead during the execution, which is mainly due to the multi-host Docker networking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.