Solid-state luminescent materials with long lifetimes are the subject of ever-growing interest from both a scientific and a technological point of view. However, when dealing with organic compounds, the achievement of highly efficient materials is limited by aggregation-caused quenching (ACQ) phenomena on one side and by ultrafast deactivation of the excited states on the other. Here, we report on a simple organic molecule, namely, cyclic triimidazole (CHN), 1, showing crystallization-induced emissive (CIE) behavior and, in particular, ultralong phosphorescence due to strong coupling in H-aggregated molecules. Our experimental data reveal that luminescence lifetimes up to 1 s, which are several orders of magnitude longer than those of conventional organic fluorophores, can be realized under ambient conditions, thus expanding the class of organic materials for phosphorescence applications.
The performance of solid luminogens depends on both their inherent electronic properties and their packing status. Intermolecular interactions have been exploited to achieve persistent room-temperature phosphorescence (RTP) from organic molecules. However, the design of organic materials with bright RTP and the rationalization of the role of interchromophoric electronic coupling remain challenging tasks. Cyclic triimidazole has been shown to be a promising scaffold for such purposes owing to its crystallization-induced room-temperature ultralong phosphorescence (RTUP), which has been associated with H-aggregation. Herein, we report three triimidazole derivatives as significant examples of multifaceted emission. In particular, dual fluorescence, RTUP, and phosphorescence from the molecular and supramolecular units were observed. H-aggregation is responsible for the red RTUP, and Br substituents favor yellow molecular phosphorescence while halogen-bonded Br⋅⋅⋅Br tetrameric units are involved in the blue-green phosphorescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.