Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of three new genome-wide association studies (GWAS) and one prior scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of nine promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P=2.33×10 −21 ), rs2523607 at 6p21.33 (HLA-B; 2.40×10 −10 ), rs79480871 at 2p23.3 (NCOA1; P=4.23×10 −8 ), and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P=9.98×10 −13 and P=3.63×10 −11 , respectively). These data provide substantial new evidence for genetic susceptibility to this B-cell malignancy, and point towards pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma (NHL) 1 , has an aggressive clinical course 2 . The risk of DLBCL is increased in individuals with a family history of NHL (odds ratio (OR)=1.4; 95%CI 1.1-2.0) 3 , supporting a genetic contribution. Also, relatives of DLBCL patients are at elevated risk for both DLBCL (RR=9.8, and Hodgkin lymphoma (HL, RR=2.0, 95%CI 1.05-Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Correspondence should be addressed to: James R. Cerhan, M.D., Ph.D., Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: 507.538.0499, Fax: 507.226.2478, cerhan.james@mayo.edu. 94 These authors contributed equally to this work. 95 These authors jointly directed this work. AUTHORS CONTRIBUTIONSJ.R.C., S.I.B., S.S.W., A.N., A.R.B.-W., Q.L., G. Severi, M. Melbye, L.R.T., M.P.P., C.L., B.M.B., S.L.S., S.d.S., K.E.S., C.F.S., N.R. and S.J.C. organized and designed the study. J.R.C., L.C., L.B., A.H., P.M.B., E.A.H., S.L.S., G. Salles, C.F.S., N.R. and S.J.C. conducted and supervised the genotyping of samples. J.R.C., S.I.B., V.J., Z.W., M.Y., L.C., P.I.W.d.B., D.C., J.G., D. Zhi, Y.W.A., J.H., B.M., J.S., L.L., J.P., C.C.C., N.C., S.d.S., K.E.S., C.F.S., N.R. and S.J.C. contributed to the design and execution of statistical analysis. J.R.C., S.I.B., V.J., H.G., J.M., S.S.W., Z.W., M.Y., L.C., A.N., D.C., A.M., C.R.F., A.J.D.R., C.L., K.E.S., C.F.S., N.R. and S.J.C. wrote the first draft of the manuscript. J.R.C., V.J., H.G., J.M., S.S.W., L.C., A.N., L.B., A.M., A.R.B.-W., Q.L., G. Severi, M. Melbye, J.G., R.D.J., E.K., L.R.T., M.P.P., C.M.V., J.J.S., G.G.G., D.A., R.S.K., M.Z., K.A.B., A.Z.-J., T.M.H., B.K.L., A.J.N., A.D., Y.W.A., M.L., C.A.T., S.M.A., T.E.W., G.J.W., A.S.V., D. Zelenika, H.T., C.H., T.J.M., H.H., B.G., H.-O.A., P.M.B., J.R., M.T.S., E.A.H., W.C., P.H., L.M.M., R.K.S., L.F.T., K.E.N., N.B., Y...
Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites.
Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition.
Understanding the gene-specific risks for development of breast cancer will lead to improved clinical care for those carrying germline mutations in cancer predisposition genes. We sought to detail the spectrum of mutations and refine risk estimates for known and proposed breast cancer susceptibility genes. Targeted massively-parallel sequencing was performed to identify mutations and copy number variants in 26 known or proposed breast cancer susceptibility genes in 2134 BRCA1/2-negative women with familial breast cancer (proband with breast cancer and a family history of breast or ovarian cancer) from a largely European–Caucasian multi-institutional cohort. Case–control analysis was performed comparing the frequency of internally classified mutations identified in familial breast cancer women to Exome Aggregation Consortium controls. Mutations were identified in 8.2% of familial breast cancer women, including mutations in high-risk (odds ratio > 5) (1.4%) and moderate-risk genes (2 < odds ratio < 5) (2.9%). The remaining familial breast cancer women had mutations in proposed breast cancer genes (1.7%), Lynch syndrome genes (0.5%), and six cases had two mutations (0.3%). Case–control analysis demonstrated associations with familial breast cancer for ATM, PALB2, and TP53 mutations (odds ratio > 3.0, p < 10−4), BARD1 mutations (odds ratio = 3.2, p = 0.012), and CHEK2 truncating mutations (odds ratio = 1.6, p = 0.041). Our results demonstrate that approximately 4.7% of BRCA1/2 negative familial breast cancer women have mutations in genes statistically associated with breast cancer. We classified PALB2 and TP53 as high-risk, ATM and BARD1 as moderate risk, and CHEK2 truncating mutations as low risk breast cancer predisposition genes. This study demonstrates that large case–control studies are needed to fully evaluate the breast cancer risks associated with mutations in moderate-risk and proposed susceptibility genes.
Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.