Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalein pretreatment significantly prevented cells from 6-hydroxydopamine (6-OHDA)-induced damage by attenuating cellular apoptosis. However, post-treatment with baicalein did not show any restorative effect against 6-OHDA-induced cellular damage. We found that baicalein increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1(HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in a time- and concentration-dependent manner in PC12 cells. In addition, baicalein induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) transcriptional activity, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, we demonstrated that cytoprotective effects of baicalein could be attenuated by Nrf2 siRNA transfection and the HO-1 inhibitor zinc protoporphyrin (Znpp) as well as the proteasome inhibitor MG132. Furthermore, PKCα and AKT protein phosphorylation were up-regulated by baicalein pretreatment, and selective inhibitors targeted to PKC, PI3K, and AKT could block the cytoprotective effects of baicalein. Taken together, our results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway. Ultimately, the neuroprotective effects of baicalein may endue baicalein as a promising candidate for the prevention of PD.
Pterocarpus is a genus of trees mainly distributed in tropical Asia, Africa, and South America. Some species of Pterocarpus are rosewood tree species, having important economic value for timber, and for some species, medicinal value as well. Up to now, information about this genus with regard to the genomic characteristics of the chloroplasts has been limited. Based on a combination of next-generation sequencing (Illumina Hiseq) and long-read sequencing (PacBio), the whole chloroplast genomes (cp genomes) of five species (rosewoods) in Pterocarpus (Pterocarpus macrocarpus, P. santalinus, P. indicus, P. pedatus, P. marsupium) have been assembled. The cp genomes of five species in Pterocarpus have similar structural characteristics, gene content, and sequence to other flowering plants. The cp genomes have a typical four-part structure, containing 110 unique genes (77 protein coding genes, 4 rRNAs, 29 tRNAs). Through comparative genomic analysis, abundant simple sequence repeat (SSR)loci (333–349) were detected in Pterocarpus, among which A /T single nucleotide repeats accounted for the highest proportion (72.8–76.4%). In the five cp genomes of Pterocarpus, eight hypervariable regions, including trnH-GUG_psbA, trnS-UGA_psbC, accD-psaI, ndhI-exon2_ndhI-exon1, ndhG_ndhi-exon2, rpoC2-exon2, ccsA, and trnfM-CAU, are proposed for use as DNA barcode regions. In the comparison of gene selection pressures (P. santalinus as the reference genome), purifying selection was inferred as the primary mode of selection in maintaining important biological functions. Phylogenetic analysis shows that Pterocarpus is a monophyletic group. The species P. tinctorius is resolved as early diverging in the genus. Pterocarpus was resolved as sister to the genus Tipuana.
BACKGROUND AND PURPOSESU4312, a potent and selective inhibitor of VEGF receptor-2 (VEGFR-2), has been designed to treat cancer. Recent studies have suggested that SU4312 can also be useful in treating neurodegenerative disorders. In this study, we assessed neuroprotection by SU4312 against 1-methyl-4-phenylpyridinium ion (MPP + )-induced neurotoxicity and further explored the underlying mechanisms. EXPERIMENTAL APPROACHMPP + -treated neurons and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated zebrafish were used to study neuroprotection by SU4312. NOS activity was assayed in vitro to examine direct interactions between SU4312 and NOS isoforms. KEY RESULTSSU4312 unexpectedly prevented MPP + -induced neuronal apoptosis in vitro and decreased MPTP-induced loss of dopaminergic neurons, reduced expression of mRNA for tyrosine hydroxylase and impaired swimming behaviour in zebrafish. In contrast, PTK787/ZK222584, a well-studied VEGFR-2 inhibitor, failed to prevent neurotoxicity, suggesting that the neuroprotective actions of SU4312 were independent of its anti-angiogenic action. Furthermore, SU4312 exhibited non-competitive inhibition of purified neuronal NOS (nNOS) with an IC50 value of 19.0 mM but showed little or no effects on inducible and endothelial NOS. Molecular docking simulations suggested an interaction between SU4312 and the haem group within the active centre of nNOS. CONCLUSIONS AND IMPLICATIONSU4312 exhibited neuroprotection against MPP + at least partly via selective and direct inhibition of nNOS. Because SU4312 could reach the brain in rats, our study also offered a support for further development of SU4312 to treat neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity. Abbreviations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.