We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 cases, 118,538 controls) from ethnically-diverse populations. We identified five new asthma loci, uncovered two additional novel associations at two known asthma loci, established asthma associations at two loci implicated previously in comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large overlaps in genetic variants with autoimmune and inflammatory diseases. Enrichment of asthma risk loci in enhancer marks, especially in immune cells, suggests a major role of these loci in the regulation of immune-related mechanisms.
Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting that although balancing selection may not have an obvious impact on a large proportion of human genes, it is a key force affecting the evolution of a number of genes in humans.
To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.