The role of blood proteinases in the mobilization of hematopoietic stem/progenitor cells (HSPCs) is still not well understood. As previously reported, activation of the complement cascade (ComC) and cleavage of C5 by C5 convertase are enabling events in the release of C5a that plays a crucial role in the egress of HSPCs from bone marrow (BM) into peripheral blood (PB) and explains why C5-deficient mice are poor mobilizers. Here we provide evidence that during granulocyte colony-stimulating factor- and AMD3100-induced mobilization, not only the ComC but also two other evolutionarily ancient proteolytic enzyme cascades, the coagulation cascade (CoaC) and the fibrynolytic cascade (FibC), become activated. Activation of all three cascades was measured by generation of C5a, decrease in prothrombin time and activated partial thromboplastin time as well as an increase in the concentrations of plasmin/antiplasmin and thrombin/antithrombin. More importantly, the CoaC and FibC, by generating thrombin and plasmin, respectively, provide C5 convertase activity, explaining why mobilization of HSPCs in C3-deficient mice, which do not generate ComC-generated C5a convertase, is not impaired. Our observations shed more light on how the CoaC and FibC modulate stem cell mobilization and may lead to the development of more efficient mobilization strategies in poor mobilizers. Furthermore, as it is known that all these cascades are activated in all the situations in which HSPCs are mobilized from BM into PB (for example, infections, tissue/organ damage or strenuous exercise) and show a circadian rhythm of activation, they must be involved in both stress-induced and circadian changes in HSPC trafficking in PB.
Various experimental studies indicate potential involvement of bone marrow (BM)-derived stem cells (SCs) in malignancy development and progression. In this study, we comprehensively analysed systemic trafficking of various populations of BM-derived SCs (BMSCs), i.e., mesenchymal, haematopoietic, endothelial stem/progenitor cells (MSCs, HSCs, EPCs respectively), and of recently discovered population of very small embryonic/epiblast-like SCs (VSELs) in pancreatic cancer patients. Circulating CD133+/Lin−/CD45−/CD34+ cells enriched for HSCs, CD105+/STRO-1+/CD45− cells enriched for MSCs, CD34+/KDR+/CD31+/CD45− cells enriched for EPCs and small CXCR4+CD34+CD133+ subsets of Lin−CD45− cells that correspond to VSELs were enumerated and sorted from blood samples derived from 29 patients with pancreatic cancer, and 19 healthy controls. In addition, plasma levels of stromal-derived factor-1 (SDF-1), growth/inhibitory factors and sphingosine-1-phosphate (S1P; chemoattractants for SCs), as well as, of complement cascade (CC) molecules (C3a, C5a and C5b-9/membrane attack complex – MAC) were measured. Higher numbers of circulating VSELs and MSCs were detected in pancreatic cancer patients (P < 0.05 and 0.01 respectively). This trafficking of BMSCs was associated with significantly elevated C5a (P < 0.05) and C5b-9/MAC (P < 0.005) levels together with S1P concentrations detected in plasma of cancer patients, and seemed to be executed in a SDF-1 independent manner. In conclusion, we demonstrated that in patients with pancreatic cancer, intensified peripheral trafficking of selected populations of BMSCs occurs. This phenomenon seems to correlate with systemic activation of the CC, hepatocyte growth factor and S1P levels. In contrast to previous studies, we demonstrate herein that systemic SDF-1 levels do not seem to be linked with increased mobilization of stem cells in patients with pancreatic cancer.
Background/AimsRecent experimental studies have suggested that various cytokines may be important players in the development and progression of pancreatic cancer. However, these findings have not yet been verified in a clinical setting.MethodsIn this study, we examined the levels of a broad panel of cytokines, including interleukin (IL)-1, IL-6, IL-8, IL-10, IL-12, IL-17, and IL-23, as well as tumor necrosis factor alpha (TNFα) and granulocyte-colony stimulating factor (G-CSF) in patients with pancreatic adenocarcinoma (n = 43), other pancreatic malignancies (neuroendocrine [n = 10] and solid pseudopapillary tumors [n = 3]), and healthy individuals (n = 41).ResultsWe found that there were higher levels of IL-6, IL-8, IL-10 and TNFα in patients with pancreatic cancer compared to healthy controls (for all, at least p<0.03). Cancer patients had lower IL-23 concentrations than healthy individuals and patients diagnosed with other types of malignancies (for both, p = 0.002). Levels of IL-6, IL-8, IL-10, and IL-23 were significantly associated with the direct number of circulating bone marrow (BM)-derived mesenchymal or very small embryonic/epiblast-like stem cells (SCs) in patients with pancreatic cancer. Moreover, our study identified a potential ability of IL-6, IL-8, IL-10, IL-23, and TNFα levels to enable discrimination of pancreatic cancer from other pancreatic tumors and diseases, including acute and chronic pancreatitis and post-pancreatitis cysts (with sensitivity and specificity ranging between 70%–82%).ConclusionsOur study i) supports the significance of selected cytokines in the clinical presentation of pancreatic cancer, ii) highlights numerous associations between selected interleukins and intensified BMSCs trafficking in patients with pancreatic cancer, and iii) preliminarily characterizes the diagnostic potential of several cytokines as potential novel clinical markers of pancreatic cancer in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.